
Andreas Dilger, Whamcloud

Lustre 2.14 and Beyond

whamcloud.com

Planned Feature Release Highlights

►2.14 at feature freeze, with several important additions
• DNE directory auto-split – improve usability and performance with multiple MDTs
• OST Quota Pools – manage space on tiered storage targets with OST pools
• Client-side data encryption – persistent encryption of data from client to disk

►2.15 feature development already well underway
• Client-side directory encryption – encrypt filenames on disk on MDT
• File Level Redundancy - Erasure Coding (EC) – efficiently store striped file redundancy
• LNet IPv6 addressing - allow over 32-bit addresses, more flexible server configuration

►2.16 plans continued functional and performance improvements
• Metadata Writeback Cache (WBC) – low latency file operations in client RAM
• File Level Redundancy - Immediate Write – write to mirrors directly from client
• Dynamic inode allocation for ldiskfs - improve flexibility for DoM and large OSTs

whamcloud.com

DNE Usability Improvements (WC) (2.13+)

►Space balance new directories on "best" MDT based on available inodes/space
• Transparently select "best" MDT for normal mkdir() based on parent policy (LU-10784)
• Set default policy on parent via "lfs setdirstripe -D –i -1 dir" (LU-11213)
• Most useful for root and top-level user directories

►New crush directory hash type (LU-11025)
• Minimize number of directory entries migrated by restripe

►Automatic directory restriping as directory size grows (LU-11025)
• Create one-stripe directory for low overhead, increase shards/capacity/performance with size
• Add mdt.*.dir_split_delta=4 shards if shard over mdt.*.dir_split_count=50000 entries
• Move fraction of existing directory entries to new directory shards (names only, not inodes)
• New directory entries and inodes created directly on new MDTs

► Improve MDT usage/space balancing for new filesystems (LU-13417)
► Select closest network-local MDT(s) for mkdir for tiered/distributed configs (LU-12909)

2.13
2.14

2.15

master +4 shards +4 shards

https://jira.whamcloud.com/browse/LU-10784
https://jira.whamcloud.com/browse/LU-11213
https://jira.whamcloud.com/browse/LU-11025
https://jira.whamcloud.com/browse/LU-11025
https://jira.whamcloud.com/browse/LU-13417
https://jira.whamcloud.com/browse/LU-12909

whamcloud.com

►Account/limit space for OSTs in a specific pool
• Control usage of small flash OSTs in tiered config

►Use existing Lustre quota infrastructure
• OST already tracks space per UID/GID/ProjID
• Pool usage based on sum of current OSTs in pool

►Add quota pool limits per UID/GID/ProjID
• No extra accounting on the OSTs
• Only new aggregation/reporting by MDS

►Check quota limit when allocating OST objects
• Avoid OSTs with little/no quota available

►MDT pools to allow MDT tiering
• Manage/balance DoM MDT space usage
• Handle MDT storage classes (e.g. NVRAM vs. NAND)

2.14
TBD

OST Quota Pools (LU-11023, Cray/HPE) (2.14+)

Metadata
Servers
(~100s)

Object
Storage
Servers
(1000s)

Main Metadata
Targets (MDTs)

Capacity OSTs
(hdd OST Pool)

Lustre Clients
(10,000s)

Local
NVRAM
MDTs

Cold Tier FLR EC
(archive OST Pool)

Policy
Engine

Local NVMe Tier
(flash OST pool)

https://jira.whamcloud.com/browse/LU-11023

whamcloud.com

►Protect from storage theft or loss, and network or malicious client snooping
►Encryption on Lustre client down to storage

• Securely store user crypto keys in client kernel keyring
• Data encrypted before sending to servers
• Data decrypted after receiving from servers
• Servers/storage only see encrypted data
• Transparent to backend filesystem/storage (ldiskfs/ZFS)
• Use larger client CPU capacity to encrypt/decrypt data

►Use existing ext4/f2fs fscrypt library/tools
• Inventing your own encryption is a fool's errand
• Per-directory tree tunable encryption setting/user master key
• Per-file encryption key, itself encrypted by user master key
o Fast and secure deletion of file once per-file key is erased
oDecrypted data dropped from client cache when user master key removed

► Filenames encrypted on client for MDT directory entries

Client Data Encryption to Disk (LU-12755, WC) (2.14+)

2.15
2.14

https://jira.whamcloud.com/browse/LU-12755

whamcloud.com

►MR Router Health improvements (LU-12941, LU-13510, LU-13025, …, HPE, WC)
►User Defined Selection Policy (LU-9121, WC)

• Fine grained control of interface selection
oTCP vs. IB networks, primary vs. backup, local vs. remote

• Optimize internal RAM/CPU/PCI data transfers
• Useful for large NUMA machines with multi-rail

►IPv6 Node Addressing (LU-10391, WC, SuSE)
• Allow NIDs larger than 32+32bits in TCP and IB
oNew sockv6lnd, o6iblnd nettypes for protocol compatibility
oAllow direct IB GUID addressing, to avoid need for IPoIB?

• Use Imperative Recovery log for MDT/OST addressing on clients (LU-10360, WC)
oAllow OSTs and MDTs to mount on any server, no requirement for failover addresses

• NIDs no longer needed in Lustre config (LU-13306, WC)

LNet Improvements (2.14+)

2.15

2.14

2.14

https://jira.whamcloud.com/browse/LU-12941
https://jira.whamcloud.com/browse/LU-13510
https://jira.whamcloud.com/browse/LU-13025
https://jira.whamcloud.com/browse/LU-9121
https://jira.whamcloud.com/browse/LU-10391
https://jira.whamcloud.com/browse/LU-10360
https://jira.whamcloud.com/browse/LU-13306

whamcloud.com

Data-on-MDT (DoM) Improvements (WC) (2.14+)

►Shrink DoM component size if MDT free space running out too quickly (LU-12785)
►Early lock cancel for DoM, +28% IOPS on IO500 mdtest-easy-delete (LU-12321)
►Optimized DoM->OST component removal (LU-13612)

• Avoid whole-file copy when freeing space from MDT

►Merge data write with MDS_CLOSE RPC (LU-11428)
• Reduce RPC count by half for mdtest-hard-write

►Cross-file data prefetch via statahead (LU-10280)

►Store very small files (< 600 bytes0 directly in ldiskfs inode (inline_data, LU-5603)
►Dynamic inode allocation for ldiskfs (LU-12099)

• Simplify initial MDT setup, less need for up-front decision about bytes-per-inode ratio

• Also improves flexibility for OSTs as they become larger

2.14
2.15

2.16

DoM

1st OST Object

64
KB

1M
B

https://jira.whamcloud.com/browse/LU-12785
https://jira.whamcloud.com/browse/LU-12321
https://jira.whamcloud.com/browse/LU-13612
https://jira.whamcloud.com/browse/LU-11428
https://jira.whamcloud.com/browse/LU-10280
https://jira.whamcloud.com/browse/LU-5603
https://jira.whamcloud.com/browse/LU-12099

whamcloud.com

Miscellaneous Improvements (2.14+)

►Upstream kernel client cleanups still in active development/merge (ORNL, SuSE, HPE)
• Lustre master <-> kernel client staying nearly in sync, hundreds! of patches landed
• Need IPv6 support in LNet before submitting upstream, per upstream request

►Disable server page cache for large IOs to avoid kernel overhead (LU-12071, WC)
►Stateless client-on-server mount for data migration tasks (LU-12722, WC)
► statx() for lightweight attribute fetching, file creation time (LU-10934, WC)
► fallocate() for file preallocation (ldiskfs only) (LU-3606, WC, End User)
►External HSM Coordinator to simplify HSM optimization/improvement (LU-10968 , HPE)
► fallocate() for ZFS, PUNCH_HOLE, ZERO_RANGE (LU-11234, WC)
►Pool Selection Policy by filename extension, NID, UID/GID (LU-11234, WC)
►Dynamic openlock on client for repeated opens (LU-10948, WC)
► O_TMPFILE for creating temporary files outside namespace (LU-9512)

2.14
2.15

https://jira.whamcloud.com/browse/LU-12071
https://jira.whamcloud.com/browse/LU-12722
https://jira.whamcloud.com/browse/LU-10934
https://jira.whamcloud.com/browse/LU-3606
https://jira.whamcloud.com/browse/LU-10968
https://jira.whamcloud.com/browse/LU-11234
https://jira.whamcloud.com/browse/LU-11234
https://jira.whamcloud.com/browse/LU-10948
https://jira.whamcloud.com/browse/LU-9512

whamcloud.com

Improved Client Efficiency for AI/ML (2.14+)

► Improve parallel client readahead (LU-12043, LU-13386, LU-13412, WC)
• Parallel readahead for single user thread (e.g. "dd") from 1.9GB/s -> 4.0GB/s

► Improved strided readahead (IO-500 ior-hard-read) (LU-12518, LU-12644, WC)
• Detect and handle page-unaligned strided reads
• Allow readahead to continue for slightly "imprecise" strides

►Asynchronous Direct IO (AIO/DIO, LU-4198, WC, Uber)
• Improved 4KB random IO via libaio (write 100k->266k IOPS; read 80k->610k IOPS)

►Bind service threads to specific CPT cores (LU-13258, WC, ORNL)
• Readahead, pinger, export cleanup limited to run on specified cores
• Avoid jitter in scheduling of other threads on node

►Optimized GPU data path with RDMA
► Local client mount on OST/MDT for data mover/resync (LU-10191, WC)

• Beginning of optimization for server-local IO path to avoid RPC + data copy

2.14
2.15

https://jira.whamcloud.com/browse/LU-12043
https://jira.whamcloud.com/browse/LU-13386
https://jira.whamcloud.com/browse/LU-13412
https://jira.whamcloud.com/browse/LU-12518
https://jira.whamcloud.com/browse/LU-12644
https://jira.whamcloud.com/browse/LU-4198
https://jira.whamcloud.com/browse/LU-13258
https://jira.whamcloud.com/browse/LU-10191

whamcloud.com

Persistent Client Cache (PCC) (LU-10092, WC) (2.13+)

►Reduce latency, improve small/unaligned IOPS, reduce network traffic

►PCC integrates Lustre with a persistent per-client local cache storage
• A local filesystem (e.g. ext4 or ldiskfs) is created on client device (SSD/NVMe/NVRAM)
• New files created in PCC are also created on Lustre MDS

► Integrate PCC, HSM, FLR to manage layouts (LU-13637)
• Simplify code, improve functionality

►Add shared read vs. exclusive write cache
► Integrate with DAX for NVRAM cache device

• Use dedicated NVRAM filesystem (e.g. NOVA) for speed

OST OST OST

NVMe
HSM

LOV

llite PCC Switcher

Cache IONormal
IO

Fetch
NVMe

HSM

LOV

llite PCC Switcher

Cache IONormal
IO

Fetch

2.13

2.15

https://jira.whamcloud.com/browse/LU-10092
https://jira.whamcloud.com/browse/LU-13637

whamcloud.com

Ongoing ldiskfs Improvements (2.14+)

►Fix huge OSTs mounting, toward 1PiB ldiskfs OST (LU-12988, LU-13241, WC, HPE)
►Existing features available that could be used by Lustre on ldiskfs

• Efficient large block allocation for large OSTs (bigalloc, LU-12967)
• Files/dirs <600 bytes inside MDT inode, 3.7KB in 4KB inode (inline_data, LU-5603)
• Metadata integrity checksums persistently stored on disk (metadata_csum, LU-13650)

►Directory shrink as files are deleted from old directories (LU-12051)
• Allow dynamic OST object directory allocation to improve performance (LU-12988)

►Merge ldiskfs dirdata feature to upstream ext4/e2fsprogs
► Integrated ldiskfs filesystem snapshots for MDTs and OSTs (LU-13660, WC)
►Dynamic ext4 inode allocation for MDTs and OSTs (LU-12099)

• Design discussions underway with upstream ext4 maintainers
• OSTs could allocate new inode tables when not enough free inodes for small files
• MDTs could release unused inode tables for DoM when many free inodes

2.16

2.14
2.15

https://jira.whamcloud.com/browse/LU-12988
https://jira.whamcloud.com/browse/LU-13241
https://jira.whamcloud.com/browse/LU-12967
https://jira.whamcloud.com/browse/LU-5603
https://jira.whamcloud.com/browse/LU-13650
https://jira.whamcloud.com/browse/LU-12051
https://jira.whamcloud.com/browse/LU-12988
https://jira.whamcloud.com/browse/LU-13660
https://jira.whamcloud.com/browse/LU-12099

whamcloud.com

File Level Redundancy (FLR) Enhancements (WC) (2.15+)

►Erasure coding adds redundancy without 2x/3x mirror overhead (LU-10911)
• Delayed erasure coding to new/existing striped files after normal write
• For striped files - add N parity per M data stripes (e.g. 16d+3p)
• Leverage CPU-optimized EC code (Intel ISA-L) for best performance
• Fixed RAID-4 parity layout per file, declustered Parity across files to avoid OST bottlenecks

►HSM in composite layout xattr like FLR mirror (LU-10606, WC)
• Allow multiple archives per file (POSIX, S3, tape, ...)
• Allow partial HSM file copy/restore to/from archive

► Immediate file write mirroring (LU-13643)
• Client writes both copies of mirror directly
oReduces available bandwidth on client

• Mirrors kept in sync unless client write fails
• Delayed resync if mirror goes stale, like before

Replica 0 Flash Object j (PRIMARY, PREFERRED)

Replica 1 Flash Object k (PRIMARY, PREFERRED)

Replica 2 HSM S3 Archive delayed sync

2.16

2.15
2.15

https://jira.whamcloud.com/browse/LU-10911
https://software.intel.com/en-us/storage/ISA-L
https://jira.whamcloud.com/browse/LU-10606
https://jira.whamcloud.com/browse/LU-13643

whamcloud.com

►Create new dirs/files in client RAM without RPCs
• Lock new directory exclusively at mkdir time
• Cache new files/dirs/data in RAM until cache flush or remote access

►No RPC round-trips for file modifications in new directory
►Files globally visible on MDS flush, normal use afterward

• Flush top-level entries, exclusively lock new subdirs, unlock parent
o Repeat as needed for subdirectories being accessed remotely

• Flush rest of tree in background to MDS/OSS by age or size limits

►WBC prototype developed to test concept
• 10-20x single-client speedup in early testing (untar, make, …)

►Productization of WBC code well underway
• Complexity handling partially-cached directories, space usage

►Aggregate operations to server to improve performance
• Batch operations in one RCP to reduce network traffic/handling
• Batch operations to disk filesystem to reduce disk IOPS?

Client

MDS

Client

OSS

Files &
Dirs

Files &
Dirs

2.16
2.17

Metadata Writeback Cache (WBC) (LU-10983, WC) (2.16+)

https://jira.whamcloud.com/browse/LU-10983

Confidential

Thank You!
Questions?

	Slide Number 1
	Planned Feature Release Highlights
	DNE Usability Improvements (WC)			(2.13+)
	OST Quota Pools (LU-11023, Cray/HPE)		(2.14+)
	Client Data Encryption to Disk (LU-12755, WC)	(2.14+)
	LNet Improvements						(2.14+)
	Data-on-MDT (DoM) Improvements (WC)		(2.14+)
	Miscellaneous Improvements				(2.14+)
	Improved Client Efficiency for AI/ML			(2.14+)
	Persistent Client Cache (PCC) (LU-10092, WC)	(2.13+)
	Ongoing ldiskfs Improvements				(2.14+)
	File Level Redundancy (FLR) Enhancements (WC) 	(2.15+)
	Metadata Writeback Cache (WBC) (LU-10983, WC) (2.16+)
	Slide Number 14

