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Planned Feature Release Highlights

►2.14 at feature freeze, with several important additions
• DNE directory auto-split – improve usability and performance with multiple MDTs
• OST Quota Pools – manage space on tiered storage targets with OST pools
• Client-side data encryption – persistent encryption of data from client to disk

►2.15 feature development already well underway
• Client-side directory encryption – encrypt filenames on disk on MDT
• File Level Redundancy - Erasure Coding (EC) – efficiently store striped file redundancy
• LNet IPv6 addressing - allow over 32-bit addresses, more flexible server configuration

►2.16 plans continued functional and performance improvements
• Metadata Writeback Cache (WBC) – low latency file operations in client RAM
• File Level Redundancy - Immediate Write – write to mirrors directly from client
• Dynamic inode allocation for ldiskfs - improve flexibility for DoM and large OSTs
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DNE Usability Improvements (WC) (2.13+)

►Space balance new directories on "best" MDT based on available inodes/space
• Transparently select "best" MDT for normal mkdir() based on parent policy (LU-10784)
• Set default policy on parent via "lfs setdirstripe -D –i -1 dir" (LU-11213)
• Most useful for root and top-level user directories

►New crush directory hash type (LU-11025) 
• Minimize number of directory entries migrated by restripe 

►Automatic directory restriping as directory size grows (LU-11025)
• Create one-stripe directory for low overhead, increase shards/capacity/performance with size
• Add mdt.*.dir_split_delta=4 shards if shard over mdt.*.dir_split_count=50000 entries
• Move fraction of existing directory entries to new directory shards (names only, not inodes)
• New directory entries and inodes created directly on new MDTs

► Improve MDT usage/space balancing for new filesystems (LU-13417)
► Select closest network-local MDT(s) for mkdir for tiered/distributed configs (LU-12909)

2.13
2.14

2.15

master +4 shards +4 shards

https://jira.whamcloud.com/browse/LU-10784
https://jira.whamcloud.com/browse/LU-11213
https://jira.whamcloud.com/browse/LU-11025
https://jira.whamcloud.com/browse/LU-11025
https://jira.whamcloud.com/browse/LU-13417
https://jira.whamcloud.com/browse/LU-12909
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►Account/limit space for OSTs in a specific pool
• Control usage of small flash OSTs in tiered config

►Use existing Lustre quota infrastructure
• OST already tracks space per UID/GID/ProjID
• Pool usage based on sum of current OSTs in pool 

►Add quota pool limits per UID/GID/ProjID
• No extra accounting on the OSTs
• Only new aggregation/reporting by MDS

►Check quota limit when allocating OST objects
• Avoid OSTs with little/no quota available

►MDT pools to allow MDT tiering
• Manage/balance DoM MDT space usage
• Handle MDT storage classes (e.g. NVRAM vs. NAND)

2.14
TBD

OST Quota Pools (LU-11023, Cray/HPE) (2.14+)
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https://jira.whamcloud.com/browse/LU-11023
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►Protect from storage theft or loss, and network or malicious client snooping
►Encryption on Lustre client down to storage

• Securely store user crypto keys in client kernel keyring
• Data encrypted before sending to servers
• Data decrypted after receiving from servers
• Servers/storage only see encrypted data
• Transparent to backend filesystem/storage (ldiskfs/ZFS)
• Use larger client CPU capacity to encrypt/decrypt data

►Use existing ext4/f2fs fscrypt library/tools
• Inventing your own encryption is a fool's errand
• Per-directory tree tunable encryption setting/user master key
• Per-file encryption key, itself encrypted by user master key
o Fast and secure deletion of file once per-file key is erased
oDecrypted data dropped from client cache when user master key removed

► Filenames encrypted on client for MDT directory entries

Client Data Encryption to Disk (LU-12755, WC) (2.14+)

2.15
2.14

https://jira.whamcloud.com/browse/LU-12755
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►MR Router Health improvements (LU-12941, LU-13510, LU-13025, …, HPE, WC)
►User Defined Selection Policy (LU-9121, WC)

• Fine grained control of interface selection
oTCP vs. IB networks, primary vs. backup, local vs. remote

• Optimize internal RAM/CPU/PCI data transfers
• Useful for large NUMA machines with multi-rail

►IPv6 Node Addressing (LU-10391, WC, SuSE)
• Allow NIDs larger than 32+32bits in TCP and IB
oNew sockv6lnd, o6iblnd nettypes for protocol compatibility
oAllow direct IB GUID addressing, to avoid need for IPoIB?

• Use Imperative Recovery log for MDT/OST addressing on clients (LU-10360, WC)
oAllow OSTs and MDTs to mount on any server, no requirement for failover addresses

• NIDs no longer needed in Lustre config (LU-13306, WC)

LNet Improvements (2.14+)

2.15

2.14

2.14

https://jira.whamcloud.com/browse/LU-12941
https://jira.whamcloud.com/browse/LU-13510
https://jira.whamcloud.com/browse/LU-13025
https://jira.whamcloud.com/browse/LU-9121
https://jira.whamcloud.com/browse/LU-10391
https://jira.whamcloud.com/browse/LU-10360
https://jira.whamcloud.com/browse/LU-13306
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Data-on-MDT (DoM) Improvements (WC) (2.14+)

►Shrink DoM component size if MDT free space running out too quickly (LU-12785)
►Early lock cancel for DoM, +28% IOPS on IO500 mdtest-easy-delete (LU-12321)
►Optimized DoM->OST component removal (LU-13612)

• Avoid whole-file copy when freeing space from MDT

►Merge data write with MDS_CLOSE RPC (LU-11428)
• Reduce RPC count by half for mdtest-hard-write

►Cross-file data prefetch via statahead (LU-10280)

►Store very small files (< 600 bytes0 directly in ldiskfs inode (inline_data, LU-5603)
►Dynamic inode allocation for ldiskfs (LU-12099)

• Simplify initial MDT setup, less need for up-front decision about bytes-per-inode ratio

• Also improves flexibility for OSTs as they become larger

2.14
2.15
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https://jira.whamcloud.com/browse/LU-12785
https://jira.whamcloud.com/browse/LU-12321
https://jira.whamcloud.com/browse/LU-13612
https://jira.whamcloud.com/browse/LU-11428
https://jira.whamcloud.com/browse/LU-10280
https://jira.whamcloud.com/browse/LU-5603
https://jira.whamcloud.com/browse/LU-12099
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Miscellaneous Improvements (2.14+)

►Upstream kernel client cleanups still in active development/merge (ORNL, SuSE, HPE)
• Lustre master <-> kernel client staying nearly in sync, hundreds! of patches landed
• Need IPv6 support in LNet before submitting upstream, per upstream request

►Disable server page cache for large IOs to avoid kernel overhead (LU-12071, WC)
►Stateless client-on-server mount for data migration tasks (LU-12722, WC)
► statx() for lightweight attribute fetching, file creation time (LU-10934, WC)
► fallocate() for file preallocation (ldiskfs only) (LU-3606, WC, End User)
►External HSM Coordinator to simplify HSM optimization/improvement (LU-10968 , HPE)
► fallocate() for ZFS, PUNCH_HOLE, ZERO_RANGE (LU-11234, WC)
►Pool Selection Policy by filename extension, NID, UID/GID (LU-11234, WC)
►Dynamic openlock on client for repeated opens  (LU-10948, WC)
► O_TMPFILE for creating temporary files outside namespace (LU-9512)

2.14
2.15

https://jira.whamcloud.com/browse/LU-12071
https://jira.whamcloud.com/browse/LU-12722
https://jira.whamcloud.com/browse/LU-10934
https://jira.whamcloud.com/browse/LU-3606
https://jira.whamcloud.com/browse/LU-10968
https://jira.whamcloud.com/browse/LU-11234
https://jira.whamcloud.com/browse/LU-11234
https://jira.whamcloud.com/browse/LU-10948
https://jira.whamcloud.com/browse/LU-9512
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Improved Client Efficiency for AI/ML (2.14+)

► Improve parallel client readahead (LU-12043, LU-13386, LU-13412, WC)
• Parallel readahead for single user thread (e.g. "dd") from 1.9GB/s -> 4.0GB/s

► Improved strided readahead (IO-500 ior-hard-read) (LU-12518, LU-12644, WC)
• Detect and handle page-unaligned strided reads
• Allow readahead to continue for slightly "imprecise" strides

►Asynchronous Direct IO (AIO/DIO, LU-4198, WC, Uber)
• Improved 4KB random IO via libaio (write 100k->266k IOPS; read 80k->610k IOPS)

►Bind service threads to specific CPT cores (LU-13258, WC, ORNL)
• Readahead, pinger, export cleanup limited to run on specified cores
• Avoid jitter in scheduling of other threads on node

►Optimized GPU data path with RDMA 
► Local client mount on OST/MDT for data mover/resync (LU-10191, WC)

• Beginning of optimization for server-local IO path to avoid RPC + data copy

2.14
2.15

https://jira.whamcloud.com/browse/LU-12043
https://jira.whamcloud.com/browse/LU-13386
https://jira.whamcloud.com/browse/LU-13412
https://jira.whamcloud.com/browse/LU-12518
https://jira.whamcloud.com/browse/LU-12644
https://jira.whamcloud.com/browse/LU-4198
https://jira.whamcloud.com/browse/LU-13258
https://jira.whamcloud.com/browse/LU-10191
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Persistent Client Cache (PCC) (LU-10092, WC) (2.13+)

►Reduce latency, improve small/unaligned IOPS, reduce network traffic

►PCC integrates Lustre with a persistent per-client local cache storage
• A local filesystem (e.g. ext4 or ldiskfs) is created on client device (SSD/NVMe/NVRAM)
• New files created in PCC are also created on Lustre MDS

► Integrate PCC, HSM, FLR to manage layouts (LU-13637)
• Simplify code, improve functionality

►Add shared read vs. exclusive write cache
► Integrate with DAX for NVRAM cache device

• Use dedicated NVRAM filesystem (e.g. NOVA) for speed
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2.13

2.15

https://jira.whamcloud.com/browse/LU-10092
https://jira.whamcloud.com/browse/LU-13637
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Ongoing ldiskfs Improvements (2.14+)

►Fix huge OSTs mounting, toward 1PiB ldiskfs OST (LU-12988, LU-13241, WC, HPE)
►Existing features available that could be used by Lustre on ldiskfs

• Efficient large block allocation for large OSTs (bigalloc, LU-12967)
• Files/dirs <600 bytes inside MDT inode, 3.7KB in 4KB inode (inline_data, LU-5603)
• Metadata integrity checksums persistently stored on disk (metadata_csum, LU-13650)

►Directory shrink as files are deleted from old directories (LU-12051)
• Allow dynamic OST object directory allocation to improve performance (LU-12988)

►Merge ldiskfs dirdata feature to upstream ext4/e2fsprogs
► Integrated ldiskfs filesystem snapshots for MDTs and OSTs (LU-13660, WC)
►Dynamic ext4 inode allocation for MDTs and OSTs (LU-12099)

• Design discussions underway with upstream ext4 maintainers
• OSTs could allocate new inode tables when not enough free inodes for small files
• MDTs could release unused inode tables for DoM when many free inodes

2.16

2.14
2.15

https://jira.whamcloud.com/browse/LU-12988
https://jira.whamcloud.com/browse/LU-13241
https://jira.whamcloud.com/browse/LU-12967
https://jira.whamcloud.com/browse/LU-5603
https://jira.whamcloud.com/browse/LU-13650
https://jira.whamcloud.com/browse/LU-12051
https://jira.whamcloud.com/browse/LU-12988
https://jira.whamcloud.com/browse/LU-13660
https://jira.whamcloud.com/browse/LU-12099
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File Level Redundancy (FLR) Enhancements (WC)  (2.15+)

►Erasure coding adds redundancy without 2x/3x mirror overhead (LU-10911)
• Delayed erasure coding to new/existing striped files after normal write
• For striped files - add N parity per M data stripes (e.g. 16d+3p)
• Leverage CPU-optimized EC code (Intel ISA-L) for best performance
• Fixed RAID-4 parity layout per file, declustered Parity across files to avoid OST bottlenecks

►HSM in composite layout xattr like FLR mirror (LU-10606, WC)
• Allow multiple archives per file (POSIX, S3, tape, ...)
• Allow partial HSM file copy/restore to/from archive

► Immediate file write mirroring (LU-13643)
• Client writes both copies of mirror directly
oReduces available bandwidth on client

• Mirrors kept in sync unless client write fails
• Delayed resync if mirror goes stale, like before

Replica 0 Flash Object j (PRIMARY, PREFERRED)

Replica 1 Flash Object k (PRIMARY, PREFERRED)

Replica 2 HSM S3 Archive delayed sync

2.16

2.15
2.15

https://jira.whamcloud.com/browse/LU-10911
https://software.intel.com/en-us/storage/ISA-L
https://jira.whamcloud.com/browse/LU-10606
https://jira.whamcloud.com/browse/LU-13643
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►Create new dirs/files in client RAM without RPCs
• Lock new directory exclusively at mkdir time
• Cache new files/dirs/data in RAM until cache flush or remote access

►No RPC round-trips for file modifications in new directory
►Files globally visible on MDS flush, normal use afterward

• Flush top-level entries, exclusively lock new subdirs, unlock parent
o Repeat as needed for subdirectories being accessed remotely

• Flush rest of tree in background to MDS/OSS by age or size limits

►WBC prototype developed to test concept
• 10-20x single-client speedup in early testing (untar, make, …)

►Productization of WBC code well underway
• Complexity handling partially-cached directories, space usage

►Aggregate operations to server to improve performance
• Batch operations in one RCP to reduce network traffic/handling
• Batch operations to disk filesystem to reduce disk IOPS?
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Files & 
Dirs

Files & 
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2.16
2.17

Metadata Writeback Cache (WBC) (LU-10983, WC) (2.16+)

https://jira.whamcloud.com/browse/LU-10983
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