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Background

► Lustre architecture is becoming more heterogeneous

► Heterogeneous media are becoming common in a Lustre file system

• Different specifications: Capacity, Latency, Bandwidth, Reliability, Cost

• HDD for big capacity

• SSD/NVME for quick metadata operations

► Different network bandwidths to storages in a Lustre file system

• Different network bandwidths from a client to different OSTs

• Extreme condition: Local OSTs on a Lustre client

► Trend: multiple tiering levels inside Lustre

• OST/MDT pools with different storage media

• Persistent Client Cache within the same namespace of main Lustre

• Hierarchical Storage Management for archive

• Lustre on Demand for job-level cache outside of global Lustre
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Example architecture of a heterogeneous Lustre file system
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Motivations

► Storage with higher performance (cost) needs to produce higher benefit

• The high-performance storage should not be wasted by low-priority jobs

• The high-performance storage should be carefully allocated between the critical jobs or work-flows

► Better QoS (Quality of service) guarantee

• Different users/jobs have different priorities and different QoS requirement

• Lustre administrator should have the tools to provide QoS guarantee

• Users should have the choices to balance the cost and performance

► Utilize storage locality

• Allocate file’s data to OSTs that have quicker connections to the client

► Promote the entire efficiency of the file system

• Slow storage for applications with sparse I/Os and quick storage for applications with intensive I/Os
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Solution: Data Placement Policy for OST Pools

► LU-11234: Data Placement Policy (DPP) mechanism for OST pools

• Patch: https://review.whamcloud.com/#/c/33126

► Classification and separation of storage of different types by using OST pool

• Virtual separation for flexibility

• Dynamically configurable

• Upcoming pool quota for space accounting and limitation

► Data placement policy based on classification of file creation requests

• Global rules can be configured on MDS and then applied immediately to the whole file system

• Rules can be based on UID, GID, project ID, JobID, NID, file name patterns

• Rules can have complex expression with different IDs/filename

• A series of ordered rules can be defined as a complete policy

• If a rule matches the file creation request, the object(s) of the file will be created in the specified OST pool

► Re-use of common codes in NRS TBF policy

• NRS TBF policy is able to classify the I/Os based on UID/GID/NID/JobID/Opcode and their combinations

• Common policy code is moved from NRS TBF to shared library

https://review.whamcloud.com/#/c/33126
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Design of DPP
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Interfaces of DPP

► Add a filename extension rule:
• lctl set_param lod.*.layout_policy="add rule_sourcecode pool0 suffix={.h .c}"

► Add a rule based on UID
• lctl set_param lod.*.layout_policy=“add rule_vip_users pool1 uid={500 1000}"

► Add a rule based on GID
• lctl set_param lod.*.layout_policy="add rule_vip_groups pool2 gid={500 1000}"

► Add a rule based on NID

• lctl set_param lod.*.layout_policy="add rule_vip_client pool3 nid={10.0.0.200@tcp}"

► Add a complex rule based on combination of attributes
• lctl set_param lod.*.layout_policy= "add rule1 pool4 uid={500}&gid={1000},suffix={.c .h}"

► Delete a rule
• lctl set_param lod.*.layout_policy="del rule1"
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Use Case of Policies based on UID/GID

► Users/groups on a shared Lustre are usually charged according to space usage

• UID/GID quota are commonly used for usage accounting and limitation

► Potential factors of payment

• In a Lustre filesystem with heterogeneous media, storage types matters along with space usage

• Fast storage costs more

• Entire QoS guarantee is even better

• Users should have a lot of choices to balance between performance and cost

► Pool quota (LU-11023)

• Enables accounting and usage limitation of users/groups per OST pool

• DPP + pool quota enable usage limitation of precious OST pools based on UID/GID/ProjID

► QoS of DPP based on UID/GID

• Better QoS by combining DPP together with NRS TBF
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Use Case of Policies based on Project ID

► Project quota for capacity/inode accounting and usage limitation

• Project ID

o Inodes that belong to the same project possess the same identification, just like user/group ID

• Inherit flag

o An inode flag which defines the behavior related to projects

• Directory with inherit flag:

o All newly created sub-files inherit project IDs from the parent

o No renaming of an inode with different project ID to the directory is allowed (EXDEV returned)

o No hard-links from an inode with different project ID to the directory is allowed (EXDEV returned)

► DPP based on project ID

• A whole directory tree with a given project ID located into a given OST pool

► Examples of use cases:

• Build directory tree is located to SSD OST pool for accelerated build

• Archive directory tree is located to cheap nearline OSTs

• Job directory tree is located to quick OST pool for quick run
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Examples of Policies based on Project ID
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Use Cases of Policies based on NID (1)

► Network bandwidths between a Lustre client and different OSTs might be different

► DPP rules based on NID can be defined to select OSTs with better network connection to the 
client
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Use Cases of Policies based on NID (2)

► Lustre on Demand

• Fast Lustre inside compute nodes with embedded OSTs/MDTs

• Integration with job scheduler

• Transparent and automated stage-in/out

► DPP for Lustre on Demand

• Each compute node has its own local OST/MDT

• DPP based on NID is able to locate the files created by a 
compute node to its local OST/MDT

► Benefit

• No RPC latency with data locates on local OST/MDT

• “Infinite” network bandwidth between client and local 
OST/MDT

► Combination with Data on MDT

• Performance on local MDTs will be close to local file system 
both for metadata and data
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Use Cases of Policies based on Filename Extension
► Filename extension

• An important metadata of the file

• Usually indicates the type of file

► Prediction of file size based on filename extension

• .rpm: usually has significant size with binaries included, for example:

o Lustre-2.12.1 server RPMs has 692MB with 34 files, 20MB per file

o CentOS7 RPMs has 905MB with 436 files, 2MB per file

• .git: usually contains a log of small files, for example:

o Lustre has 229MB with 4839 files, 47KB per file

o Linux kernel has 3.5GB with 65404 files, 53KB per file

• .iso: usually big files

o centos/7/isos/x86_64 has 18GB with 6 files, 3GB per file

► Prediction of access pattern based on filename extension

• .mpg/.mpeg: movies  are usually sequentially read

• .log: log files are usually written with append mode

► Reliability guarantee based on filename extension

• .c/.h/.java/.py/.php: source code files usually need higher reliability guarantee
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Examples of Policies based on Filename Extension
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Conclusion

► We developed a mechanism (DPP) which enables configurable and flexible policies for data 
placement

► DPP is able to enable a lot of use cases especially for storage tiering of Lustre

► Future work

• Integrate DPP with different tiers of Lustre, e.g. Lustre on Demand, Persistent Client Cache and HSM

• Integrate DPP with upcoming pool quota

• Automatic DPP policies based on heuristic algorithms or machine learning

• Smart policies for metadata placement of DNE based on MDT pool

• Smart policies for Progressive File Layout

• Smart policies for upcoming feature of File Level Redundancy

o Mirror important files (e.g. source code files) to increase data reliability




