
Patrick Farrell, LUG ‘19

Overstriping:
Extracting Maximum Shared File Performance

whamcloud.com

Scaling I/O Performance

►Some basics:
Lustre data performance is scaled by adding OSTs (and metadata
performance by adding MDTs)

►I/O must be spread across OSTs to benefit

►Lustre can do this by using many files (file per process) or a single file,
striped across many OSTs (single shared file)

►Either approach gets you access to many OSTs at the same time

whamcloud.com

Lustre File Striping

►Lustre allows striping of file data across multiple disk targets (OSTs)

►Horizontal scaling of I/O performance within a file, not only for multiple
files

►RAID0 striping across OSTs, one stripe per OST

►Originally limited to 160 stripes, now allows up to 2000 stripes per file

►Can put all OSTs in one file, so can get full performance… right?

whamcloud.com

Single Shared File vs File Per Process (FPP)

►File per process gives a fully independent I/O domain for each process

►All writing can happen without lock contention with other clients

►Single shared file means many writers to the same file

►Each stripe has its own locking, and Lustre supports range locking…

►Note:
Because read locks can overlap, shared file read performance doesn’t
have this issue. Unless specified, we’re talking about writing.

whamcloud.com

Shared File Writing

►‘Good’ shared file I/O generally means strided I/O (ex., MPIIO/MPICH
library collective buffering)

►Writes are non-overlapping, clients write alternating blocks in a strided
pattern

►In practice, it doesn’t scale at > 1 writer per stripe

►Best bandwidth achieved at 1 writer, with I/O aligned to stripes

►Writers otherwise end up doing “lock exchange”

►Can only scale by adding more stripes

whamcloud.com

Shared File Locking – Two client example

whamcloud.com

SSF Write Scaling: Single OST, SSF vs FPP

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6

M
iB

/s

Clients

SSF FPP

whamcloud.com

Extracting Maximum OST Performance

►OSTs today are 5-10 GiB/s write, next gen 10-30 GiB/s

►Distributed parity enables huge OSTs (512 TB+)

►Getting maximum performance means many files per OST (FPP)

►With 1 writer per OST, SSF is stuck way behind

►We use many stripes per OST in the FPP config

►Just one in the SSF config...

whamcloud.com

Overstriping: Stripe != OST

►No reason why we must have only one stripe per OST

►Reasons are all historical

• Contention on HDD based OSTs with multiple files/stripes

• Unnecessary for slow OSTs (1 stripe is plenty)

• Inertia from copying traditional disk level RAID0

►Overstriping means num stripes > num OSTs, ie, > 1 stripe per OST

►Basic change is trivial:
Remove explicit checks preventing this

►Revealed several latent bugs with high stripe counts and xattr handling, but no
architectural changes required

whamcloud.com

Overstriping: Graphically

whamcloud.com

Usage

►Overstriping is easy – Uses existing commands and interfaces (setstripe, getstripe)

► It’s just stripe count, with the option to overstripe if stripe count > OST count

► Like any other layout option:

• Set using lfs setstripe

•Works in setstripe ioctl & llapi

•Works in default layouts (set on directories)

whamcloud.com

Examples: lfs setstripe

►600 stripes in a file – Use ‘C’ to request overstriping:

lfs setstripe –C 600 testfile

►Works with OST pools
32 stripes, 4 OSTs in pool (8 stripes per OST):

lfs setstripe –C 32 –p 4_ost_pool testfile

►Can specify OSTs – 4 stripes on OST 2, 4 on OST 3:

lfs setstripe –o 2,3,2,3,2,3,2,3 testfile

whamcloud.com

Examples: lfs getstripe

►Getstripe – 2 OSTs (0 & 1), 4 stripes:
lmm_stripe_count: 4

lmm_stripe_size: 1048576

lmm_pattern: raid0,overstripe

lmm_objects:

- l_ost_idx: 0

l_fid: 0x100000000:0x828:0x0

- l_ost_idx: 1

l_fid: 0x100010000:0x807:0x0

- l_ost_idx: 0

l_fid: 0x100000000:0x829:0x0

- l_ost_idx: 1

l_fid: 0x100010000:0x808:0x0

whamcloud.com

Benchmark Hardware

►1 x ES18K(SFA18KE)

•OPA

•8 x SS9012 Disk enclosure

• 640 x HGST 10TB NL-SAS(HUH721010AL4200)

►4 x OSS (on Virtual Machine) with dual-rail on OPA

• 5 x OST per OSS

►2 x Lustre MDS

•OPA

• 1 x Intel Xeon Platinum 8160

• 96GB DDR4 2667Mhz

whamcloud.com

Benchmarking: Single OST, FPP vs SSF

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6

M
iB

/s

Clients

SSF FPP

whamcloud.com

Benchmarking: Single OST, FFP vs SSF vs SSF + Overstriping

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6

M
iB

/s

Clients

SSF FPP SSF + Overstriping, stripes = clients

whamcloud.com

Benchmarking: 10 OSTs, FPP vs SSF

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

10 16 32 64 96 128 160

M
iB

/s

Tasks
SSF FPP

whamcloud.com

Benchmarking: 10 OSTs, FPP vs SSF vs SSF + Overstriping

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

10 16 32 64 96 128 160

M
iB

/s

Tasks
SSF FPP SSF - Overstriping, stripes = tasks

whamcloud.com

Usage Recap

►Primary usage:
Extracting full file system performance in a SSF
Only relevant for stripe count > OST count
Must use stripe aligned writes

•MPIIO collective buffering is helpful

►Becomes more important with faster OSTs

►Can be useful for small pools of very fast OSTs

• For example, dynamically allocated per job pools

whamcloud.com

What about Lustre lock ahead?

►Special Lustre locking feature introduced in 2.11 (LU-6179)

•Uses manual lock requests to avoid ‘lock exchange’

•Allows > 1 writer per stripe

►Very effective, but tricky to use

• Requires MPIIO + Special library options

►Overstriping is simpler and covers most uses

►Lock ahead still relevant for extremely large systems

• If you have 1000 OSTs, you can’t put 6 stripes per OST (2000 stripe limit)

►Combined with overstriping (stripe count++, writers per stripe++)

https://jira.whamcloud.com/browse/LU-6179

whamcloud.com

Limitations: Layout size

►Adding stripes to a file increases the layout size

►Shared file means full layout is sent to all clients

►Compare FPP to SSF:

• FPP: Total layout data to clients =
1 stripe/file * 1 file/client * N clients = N*1 stripes

• SSF: Total layout data to clients =
N stripes/file * N clients = N^2 stripes

►Issue exists with widely striped files today, but only affects largest sites

whamcloud.com

Limitations: Layout size

►Not nearly as bad as it sounds, most layouts are still pretty small

►Max layout size is 64 KiB, ~2700 stripes

►160 stripes is ~ 4 KiB

►At moderate stripe counts, layout is so small it’s “free”, carried with
open op without noticeable degradation

whamcloud.com

Potential Future Work: Layout size improvements

►Lustre limited to 2000 stripes, because of XATTR size

►Layout is an xattr, 64 KiB limit per XATTR

►2000 stripes is probably not enough for Exascale systems

►Solutions:

• Simple: Add a second layout XATTR

• Better: Compress layout. ~80% reduction in layout size. Fairly easy.

• Best (But, high effort): Compact layouts (Derive OST FIDs from MDT FID)

► Compressed & compact layouts both reduce layout size, helps with
open() problem

whamcloud.com

Potential Future Work, 2: Metadata Overstriping (LU-12273)

►DNE 2 allows metadata striping

►If we have metadata striping, we can have metadata overstriping

►Allows greater performance within a single directory by placing > 1
stripe per MDT

►Considering for Lustre 2.14

https://jira.whamcloud.com/browse/LU-12273

whamcloud.com

Questions?

►Contact

• Patrick Farrell, pfarrell@whamcloud.com

►Thanks to:
Shuichi Ihara (DDN) for benchmark assistance
Michael Moore (Cray) for CUG paper collaboration

