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Our Lustre 
ecosystem



Lustre ecosystem at the SRCC (May 2019)



Sherlock at Stanford

Condo cluster constantly evolving to support research

Numbers

▸ ~4,000 users in ~670 different research groups
▸ Compute nodes have a 4-year lifecycle
▸ Currently 1,371 nodes
▸ 26,040 CPU cores; 716 GPUs; 1.876 PFlops
▸ Two separate Infiniband fabrics: FDR, EDR

Lustre 2.12 with DNE+DoM+PFL since February 2019

More info @ https://www.sherlock.stanford.edu/ 

https://www.sherlock.stanford.edu/


HPC filesystem 
lifecycle problem



Objectives

Replace Sherlock’s scratch filesystem (Regal with Fir)

▸ Data-integrity risk:  Regal’s hardware is now obsolete
▸ Improve performance with small files
▸ Better network bandwidth for large streaming I/O

Migration should be transparent for the users

▸ as in no change in workflow and scripts
▸ reasonable performance tradeoff is acceptable
▸ no prolonged downtime: use regular cluster maintenance 

windows



Usual methods of data migration

Data copy: rsync, fpsync, lustre-data-mover, etc.

▸ Requires multiple passes and a long downtime
▸ Why copy data that are going to be purged anyway?

User-led data migration

▸ Provide a new mount point to users and let them handle the 
data migration with a deadline

▸ Occasional users will miss the deadline
▸ Too disruptive for our users



Usual methods of data migration (cont’d)

In-place expansion (Lustre-specific method)

▸ Possible scenario:
▹ upgrade old system
▹ add new MDS, OSS and storage hardware
▹ backup/restore MDT(s) to new hardware
▹ use lfs migrate to move file objects to new OSTs
▹ decommission the empty, old OSTs…

▸ Error prone, especially for network upgrade

None of the usual methods is satisfactory :-(



migratefs



migratefs - principle

Node-local overlay filesystem in user space

Merge multiple directories/filesystems 
(layers) and seamlessly migrate data to 
upper layer when needed

Dispatch I/O syscalls to the right underlying 
layer

Originally forked from fuse-overlayfs
▸ https://github.com/containers/fuse-overlayfs 

https://github.com/containers/fuse-overlayfs


migratefs - easy to deploy and use

Launch daemon to merge /regal and /fir into /scratch

Track open files with:

Systemd unit file available for automatic start

# migratefs -o lowerdir=/regal,upperdir=/fir /scratch

# ls -l /proc/$(pidof migratefs)/fd



migratefs - copyup!

open() with write intent triggers a copyup 
operation, migrating the file to the upper 
layer

data is copied to a temporary file which is 
renamed when the copy is done

copyup is performed as root to copy all file 
attributes and parent directory path to the 
upper layer



migratefs - lifecycle example (scratch)

full filesystem migration time
Short maintenance #1

Short maintenance #2

data migration/purge time



migratefs - features

Uses FUSE 3.2 low-level API with no caching

▸ with added multithreading support

Metadata operations

▸ avoid copyup, lower layer writable for mkdir, rename

Permission handling

▸ runs as root and then drops privilege

Inode numbers

▸ migratefs encodes the layer ID into inode numbers

Monitoring

▸ distributed logging can be aggregated by Splunk or similar



Daily volume of data copied up during the first weeks 
in production < 3 TiB/day and decreasing
Only modified files are copied up!



migratefs & purge in action



migratefs on Sherlock – changelog

Started  production on February 5, 2019

▸ Singlethreaded

migratefs 0.3 released on February 27, 2019

▸ Multithreading support
▸ Travis-CI with fstest, stress-ng and custom tests

migratefs 0.4 released on March 11, 2019

▸ Bug fixes

migratefs 0.5 released on April 21, 2019

▸ performance improvements



migratefs - latest release 0.5.4

Skip copying data up on open(O_TRUNC)

Added a boolean flag (multilayer) to cached inode information

▸ Lookup speedup for directories that only exist in the upper

Added st_nlink caching for multilayer directories

▸ Improved performance with a directory having more than 
2 million aggregated entries...



migratefs & Lustre, room for improvement

Linux kernel 4.20+

▸ maximum I/O size for FUSE increased from 128k to 1M

▸ come on, Red Hat!

Support for renameat2() in Lustre

▸ Potential race/retry on parallel copyup would be avoided with 
renameat2(RENAME_NOREPLACE)
▹ LU-12272: Support renameat2() with RENAME_NOREPLACE flag

https://jira.whamcloud.com/browse/LU-12272


migratefs - conclusion

All the cluster nodes contribute to the data migration

Only active data are copied to the new filesystem

No change in the user environment

▸ same paths, no LD_PRELOAD, etc.

Performance tradeoff during data migration 

▸ upper layer can still be accessed directly if needed



migratefs - download & contribute

https://github.com/stanford-rc/fuse-migratefs 

https://github.com/stanford-rc/fuse-migratefs


Extra slides



migratefs - metadata operations

Most metadata ops don’t trigger a copyup by default

▸ copyup rules should match filesystem purge policies

Unlike fuse-overlayfs, with migratefs, the lower layer(s) must be 
writable

▸ rename() may create missing directories in lower layer
▸ Lustre disk quota can be set to 0 to avoid direct writes from 

users to the lower layer



migratefs - FUSE (Filesystem in Userspace)

migratefs requires FUSE 3.2

▸ Low level FUSE 3 API (like fuse-overlayfs)
▸ Not easy to find a package for CentOS 7 providing libfuse3

▹ https://github.com/stanford-rc/fuse3-centos7 

migratefs does not use FUSE name lookup caching

migratefs has multithreading support

▸ Strong requirement for decent performance over Lustre
▸ Supported by FUSE but not by fuse-overlayfs
▸ Can be disabled with -o mt=0

https://github.com/stanford-rc/fuse3-centos7


migratefs - permission handling

migratefs daemon runs as root

▸ drops privilege to run as the effective ID of the calling user
▹ similar to LANL’s MarFS

▸ root is needed for copyup to copy permissions
▸ Secondary groups are supported

Do not use FUSE’s default_permissions

▸ POSIX ACLs are not supported by FUSE when 
default_permissions is enabled!

▸ rely on the underlying filesystem for permission and ACL 
checking,  always under the context of the user



migratefs - inode numbers

fuse-overlayfs assumes that /lower and /upper are part of the 
same filesystem (common for containers)

▸ thus inode numbers from the upper and lower layers are
just exposed as is, easy!

migratefs encodes the layer ID in the high 4 bits of the inode #

▸ works with all filesystems
▸ inode numbers in Lustre are flattened FID (seq, oid)

Any better idea?

ino = (seq << 24) + ((seq >> 24) & 0xffffff0000ULL) + fid_oid(fid);

(FID’s oid is 32-bit)(FID’s seq is 64-bit)



migratefs - monitoring

Each migratefs daemon prints interesting logs

▸ copyup operation results
▸ other unexpected errors

These distributed logs are sent to Stanford’s Splunk

Logs use clear key-value pairs for use with Splunk’s automatic 
field extraction:

May 09 14:43:23 sh-ln05.stanford.edu migratefs[47585]: version=0.5.4 
copyup=success uid=315672 st_uid=315672 written=1130471060 truncate=false 
path=users/user1/WACCM/WACCMSC_CTL_122.cam.h1.0100-01-01-00000.nc



migratefs on Sherlock – changelog 1/3

Started  production on February 5, 2019

▸ Only singlethreaded versions at first (0.1.x-0.2.x)
▸ Improved error handling for cluster-awareness

▹ For example: handle ENOENT on mkdirat()
▸ Fixed a deadlock due to recursion because of calling 

{get/set/remove}xattr instead of l{get/set/remove}xattr
▸ Disabled FUSE’s default_permissions to support Lustre’s 

POSIX ACLs
▸ Adjusted OOM score in systemd unit file to avoid killing of the 

migratefs daemon (because of the user context switching)



migratefs on Sherlock – changelog 2/3

Version 0.3 released on February 27, 2019

▸ First multithreaded version
▸ Use direct syscall for per-thread setresuid()
▸ Got rid of umask() (not thread safe) and honor umask at 

open() instead from fuse_ctx
▸ Set up Travis-CI with fstest, stress-ng and custom tests

Version 0.4 released on March 11, 2019

▸ improve FUSE inode lookup count handling
▸ also fixed defects and race conditions in 0.4.x



migratefs on Sherlock – changelog 3/3

Version 0.5 released on April 21, 2019

▸ performance improvements (st_nlink, multilayer flag)
▸ now encoding layer ID in inode numbers
▸ fixed an issue reported by a user with “du” when inodes 

were not refreshed correctly (now added as custom test)
du: WARNING: Circular directory structure. 

This almost certainly means that you have a corrupted file system. 

NOTIFY YOUR SYSTEM MANAGER. 

The following directory is part of the cycle: 

‘./scripts’




