
migratefs: overlay
filesystem for transparent,
distributed migration of
active data

STANFORD RESEARCH COMPUTING CENTER

Stéphane Thiell
Stanford Research Computing Center (SRCC)
sthiell@stanford.edu

Contents

Our Lustre ecosystem

HPC filesystem lifecycle problem

Introduction to migratefs

Our Lustre
ecosystem

Lustre ecosystem at the SRCC (May 2019)

Sherlock at Stanford

Condo cluster constantly evolving to support research

Numbers

▸ ~4,000 users in ~670 different research groups
▸ Compute nodes have a 4-year lifecycle
▸ Currently 1,371 nodes
▸ 26,040 CPU cores; 716 GPUs; 1.876 PFlops
▸ Two separate Infiniband fabrics: FDR, EDR

Lustre 2.12 with DNE+DoM+PFL since February 2019

More info @ https://www.sherlock.stanford.edu/

https://www.sherlock.stanford.edu/

HPC filesystem
lifecycle problem

Objectives

Replace Sherlock’s scratch filesystem (Regal with Fir)

▸ Data-integrity risk: Regal’s hardware is now obsolete
▸ Improve performance with small files
▸ Better network bandwidth for large streaming I/O

Migration should be transparent for the users

▸ as in no change in workflow and scripts
▸ reasonable performance tradeoff is acceptable
▸ no prolonged downtime: use regular cluster maintenance

windows

Usual methods of data migration

Data copy: rsync, fpsync, lustre-data-mover, etc.

▸ Requires multiple passes and a long downtime
▸ Why copy data that are going to be purged anyway?

User-led data migration

▸ Provide a new mount point to users and let them handle the
data migration with a deadline

▸ Occasional users will miss the deadline
▸ Too disruptive for our users

Usual methods of data migration (cont’d)

In-place expansion (Lustre-specific method)

▸ Possible scenario:
▹ upgrade old system
▹ add new MDS, OSS and storage hardware
▹ backup/restore MDT(s) to new hardware
▹ use lfs migrate to move file objects to new OSTs
▹ decommission the empty, old OSTs…

▸ Error prone, especially for network upgrade

None of the usual methods is satisfactory :-(

migratefs

migratefs - principle

Node-local overlay filesystem in user space

Merge multiple directories/filesystems
(layers) and seamlessly migrate data to
upper layer when needed

Dispatch I/O syscalls to the right underlying
layer

Originally forked from fuse-overlayfs
▸ https://github.com/containers/fuse-overlayfs

https://github.com/containers/fuse-overlayfs

migratefs - easy to deploy and use

Launch daemon to merge /regal and /fir into /scratch

Track open files with:

Systemd unit file available for automatic start

migratefs -o lowerdir=/regal,upperdir=/fir /scratch

ls -l /proc/$(pidof migratefs)/fd

migratefs - copyup!

open() with write intent triggers a copyup
operation, migrating the file to the upper
layer

data is copied to a temporary file which is
renamed when the copy is done

copyup is performed as root to copy all file
attributes and parent directory path to the
upper layer

migratefs - lifecycle example (scratch)

full filesystem migration time
Short maintenance #1

Short maintenance #2

data migration/purge time

migratefs - features

Uses FUSE 3.2 low-level API with no caching

▸ with added multithreading support

Metadata operations

▸ avoid copyup, lower layer writable for mkdir, rename

Permission handling

▸ runs as root and then drops privilege

Inode numbers

▸ migratefs encodes the layer ID into inode numbers

Monitoring

▸ distributed logging can be aggregated by Splunk or similar

Daily volume of data copied up during the first weeks
in production < 3 TiB/day and decreasing
Only modified files are copied up!

migratefs & purge in action

migratefs on Sherlock – changelog

Started production on February 5, 2019

▸ Singlethreaded

migratefs 0.3 released on February 27, 2019

▸ Multithreading support
▸ Travis-CI with fstest, stress-ng and custom tests

migratefs 0.4 released on March 11, 2019

▸ Bug fixes

migratefs 0.5 released on April 21, 2019

▸ performance improvements

migratefs - latest release 0.5.4

Skip copying data up on open(O_TRUNC)

Added a boolean flag (multilayer) to cached inode information

▸ Lookup speedup for directories that only exist in the upper

Added st_nlink caching for multilayer directories

▸ Improved performance with a directory having more than
2 million aggregated entries...

migratefs & Lustre, room for improvement

Linux kernel 4.20+

▸ maximum I/O size for FUSE increased from 128k to 1M

▸ come on, Red Hat!

Support for renameat2() in Lustre

▸ Potential race/retry on parallel copyup would be avoided with
renameat2(RENAME_NOREPLACE)
▹ LU-12272: Support renameat2() with RENAME_NOREPLACE flag

https://jira.whamcloud.com/browse/LU-12272

migratefs - conclusion

All the cluster nodes contribute to the data migration

Only active data are copied to the new filesystem

No change in the user environment

▸ same paths, no LD_PRELOAD, etc.

Performance tradeoff during data migration

▸ upper layer can still be accessed directly if needed

migratefs - download & contribute

https://github.com/stanford-rc/fuse-migratefs

https://github.com/stanford-rc/fuse-migratefs

Extra slides

migratefs - metadata operations

Most metadata ops don’t trigger a copyup by default

▸ copyup rules should match filesystem purge policies

Unlike fuse-overlayfs, with migratefs, the lower layer(s) must be
writable

▸ rename() may create missing directories in lower layer
▸ Lustre disk quota can be set to 0 to avoid direct writes from

users to the lower layer

migratefs - FUSE (Filesystem in Userspace)

migratefs requires FUSE 3.2

▸ Low level FUSE 3 API (like fuse-overlayfs)
▸ Not easy to find a package for CentOS 7 providing libfuse3

▹ https://github.com/stanford-rc/fuse3-centos7

migratefs does not use FUSE name lookup caching

migratefs has multithreading support

▸ Strong requirement for decent performance over Lustre
▸ Supported by FUSE but not by fuse-overlayfs
▸ Can be disabled with -o mt=0

https://github.com/stanford-rc/fuse3-centos7

migratefs - permission handling

migratefs daemon runs as root

▸ drops privilege to run as the effective ID of the calling user
▹ similar to LANL’s MarFS

▸ root is needed for copyup to copy permissions
▸ Secondary groups are supported

Do not use FUSE’s default_permissions

▸ POSIX ACLs are not supported by FUSE when
default_permissions is enabled!

▸ rely on the underlying filesystem for permission and ACL
checking, always under the context of the user

migratefs - inode numbers

fuse-overlayfs assumes that /lower and /upper are part of the
same filesystem (common for containers)

▸ thus inode numbers from the upper and lower layers are
just exposed as is, easy!

migratefs encodes the layer ID in the high 4 bits of the inode #

▸ works with all filesystems
▸ inode numbers in Lustre are flattened FID (seq, oid)

Any better idea?

ino = (seq << 24) + ((seq >> 24) & 0xffffff0000ULL) + fid_oid(fid);

(FID’s oid is 32-bit)(FID’s seq is 64-bit)

migratefs - monitoring

Each migratefs daemon prints interesting logs

▸ copyup operation results
▸ other unexpected errors

These distributed logs are sent to Stanford’s Splunk

Logs use clear key-value pairs for use with Splunk’s automatic
field extraction:

May 09 14:43:23 sh-ln05.stanford.edu migratefs[47585]: version=0.5.4
copyup=success uid=315672 st_uid=315672 written=1130471060 truncate=false
path=users/user1/WACCM/WACCMSC_CTL_122.cam.h1.0100-01-01-00000.nc

migratefs on Sherlock – changelog 1/3

Started production on February 5, 2019

▸ Only singlethreaded versions at first (0.1.x-0.2.x)
▸ Improved error handling for cluster-awareness

▹ For example: handle ENOENT on mkdirat()
▸ Fixed a deadlock due to recursion because of calling

{get/set/remove}xattr instead of l{get/set/remove}xattr
▸ Disabled FUSE’s default_permissions to support Lustre’s

POSIX ACLs
▸ Adjusted OOM score in systemd unit file to avoid killing of the

migratefs daemon (because of the user context switching)

migratefs on Sherlock – changelog 2/3

Version 0.3 released on February 27, 2019

▸ First multithreaded version
▸ Use direct syscall for per-thread setresuid()
▸ Got rid of umask() (not thread safe) and honor umask at

open() instead from fuse_ctx
▸ Set up Travis-CI with fstest, stress-ng and custom tests

Version 0.4 released on March 11, 2019

▸ improve FUSE inode lookup count handling
▸ also fixed defects and race conditions in 0.4.x

migratefs on Sherlock – changelog 3/3

Version 0.5 released on April 21, 2019

▸ performance improvements (st_nlink, multilayer flag)
▸ now encoding layer ID in inode numbers
▸ fixed an issue reported by a user with “du” when inodes

were not refreshed correctly (now added as custom test)
du: WARNING: Circular directory structure.

This almost certainly means that you have a corrupted file system.

NOTIFY YOUR SYSTEM MANAGER.

The following directory is part of the cycle:

‘./scripts’

