
Layering ZFS Pools on Lustre

Rick Mohr
Adam Howard

National Institute for Computational Sciences
University of Tennessee



Introduction

•Lustre is a good choice for providing high-
bandwidth access to shared storage
–Excels at large sequential reads/writes
–Other operations (like small and/or random I/O) 

may not perform as well

•Sites may deploy other storage (like NFS) for 
home directories, software builds, etc.
–Doesn’t leverage existing investment in Lustre

•Could layering another file system (like ZFS) 
on top of Lustre provide some benefit?
– Improve sub-optimal use cases(?)
–Provide additional tools for system admins

2



Use Cases

•Reduction in inode usage
–One researcher created ~500 million small files and 

consumed ~70% of all inodes
–Workflow did not require parallel access across 

nodes

•Quota management
–Project uses a small cluster of compute nodes in 

an isolated enclave
– Lustre is the only storage available, so it serves as 

fast scratch space and home directory space
–Would like to restrict home directory usage while 

allowing unlimited use of scratch space

3



Use Cases

•Backups
– If home directories are on Lustre, it would be nice 

to backup files without walking the directory tree 
(i.e. - snapshots)
–And even nicer if there was a convenient way to 

send the backups to a remote host (i.e. – zfs
send/receive)

•Encryption
–Provide a place for encrypted files without needing 

to encrypt the entire file system

• I/O conditioning
–Make “bad” I/O patterns more palatable to Lustre

4



ZFS on Lustre

•Why ZFS?
–Can use files as VDEVs
–Has lots of nice admin tools
–Easily expands as needed

• Is it useful?
–Run some tests to gauge performance 
–Gain understanding of benefits and limitations of 

this approach

•Keep in mind that the goal is to supplement 
Lustre, not replace it

5



File System Configuration

•DDN SFA7700 w/ single SS8642 expansion 
enclosure
– 80x 10TB 7.2K RPM drives configured as 8 pools 

(RAID6 8+2) for OSTs
– 4x 1TB 10K RPM drives in RAID10 config for MDT

•Two VMs (CentOS 7.5) on SFA7700 controller
– First VM mounts MDT and 4 OSTs
–Second VM mounts 4 OSTs
– FDR Infiniband for both

•Client system (CentOS 7.4) w/ EDR Infiniband
•Lustre 2.10.3 and ZFS 0.7.11

6



ZFS Configuration

•Used two different ZFS configurations
1. Single Lustre file with stripe_count = 8
2. Eight Lustre files each with stripe_count = 1 

(chosen on different OSTs)

•Will refer to these configurations as 
ZFS(1v8s) and ZFS(8v1s) respectively

•A partition on the client system’s internal 
drive was available for use as a ZIL
–Any configuration using a ZIL will have “+ZIL” 

appended to name

7



Test #1: Code Compilation

•Test code compilation with two benchmarks
1. kcbench – Compiles Linux kernel
2. LAPACK (v3.8.0) build – Measure time needed to 

run “make lib”

•Ran benchmarks on:
– Lustre
– Two ZFS configurations without ZIL
– Two ZFS configurations with ZIL
–XFS on local drive

•Each test was run three times

8



Code Compilation Times

kcbench LAPACK

XFS 24.95 112.16

Lustre 170.90 122.09

ZFS(1v8s) 28.08 112.25

ZFS(1v8s)+ZIL 28.21 112.40

ZFS(8v1s) 27.41 112.76

ZFS(8v1s)+ZIL 27.36 113.50

9

Average Compilation Times (in secs)



Test #2: Metadata Rates

•Use mdtest to measure file 
create/remove/stat operations per second

•Create about 340,000 files

mdtest -F -b 4 -z 4 -u -I 1000 \

-i 3 -d <target_dir>

•Ran test against four ZFS configurations and 
Lustre (3 times each)

10



mdtest: File Create/Remove

11

0

2000

4000

6000

8000

10000

12000

14000

ZFS(1v8s) ZFS(1v8s)+ZIL ZFS(8v1s) ZFS(8v1s)+ZIL Lustre

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

File Create File Removal



mdtest: File Stat

12

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

ZFS(1v8s) ZFS(1v8s)+ZIL ZFS(8v1s) ZFS(8v1s)+ZIL Lustre

O
pe

ra
tio

ns
 p

er
 s

ec
on

d



Test #3: Small Random Sync Write

•Use fio to generate random 4K synchronous 
write requests

•Options for fio:
bs = 4K
runtime = 60
size = 1G
rw = randwrite
iodepth = 1
sync = 1

•Test all ZFS configurations and Lustre (3 
times each)

13



IOPS (4KB Sync Random Write)

14

0

1000

2000

3000

4000

5000

6000

ZFS(1v8s) ZFS(1v8s)+ZIL ZFS(8v1s) ZFS(8v1s)+ZIL Lustre

IO
PS



Test #4: Sequential Write

•Use fio to generate sequential write 
operations for various block sizes (4KB, 
128KB, 1MB)

•Options for fio:
bs = 4K
runtime = 60
size = 20G
rw = write
fallocate = none

•Test all ZFS configurations and Lustre (3 
times each)

15



Sequential Write Bandwidth

16

0

1000

2000

3000

4000

5000

6000

7000

8000

ZFS(1v8s) ZFS(1v8s)+ZIL ZFS(8v1s) ZFS(8v1s)+ZIL Lustre

B
an

dw
id

th
 (M

B
/s

)

4 KB 128 KB 1 MB



NFS Export

•Using ZFS-on-Lustre for home directories 
requires making it available via NFS
– Need to also consider NFS client performance

•Some initial results:

•More testing needed

17

kcbench LAPACK Create Remove Stat

Lustre 170 s 122 s 3,577 ops 3,607 ops 3,692 ops

ZFS(8v1s) 27 s 113 s 11,748 ops 12,055 ops 187,212 ops

ZFS/NFS 152 s 128 s 584 ops 694 ops 17,985 ops



Conclusions

•ZFS-on-Lustre looks like it may be a viable 
option for certain workloads
–Seems to compliment Lustre in some areas
–Could be particularly useful for home directories
–Opens up possibilities for alternate use cases

•Number of VDEVs and their stripe count 
influences performance on some tests
–More testing needed to identify optimal 

configuration

•May allow sites to leverage Lustre for other 
storage needs

18



Future Work

• Investigate ZFS tuning parameters
•Optimal Lustre striping for VDEVs
•Lustre tuning parameters
•SSD instead of HDD for ZIL
•Analysis of I/O patterns on the Lustre servers
•Other benchmarks

19



Questions?

20


