

IO-500 A Storage Benchmark for HPC

... or Let's Give HPC Storage the Attention It Deserves

Andreas Dilger

Lustre CTO

Whamcloud

IO-500 Why Does It Exist?

Standard way to compare storage performance for HPC systems

• Not specific to a single filesystem or workload

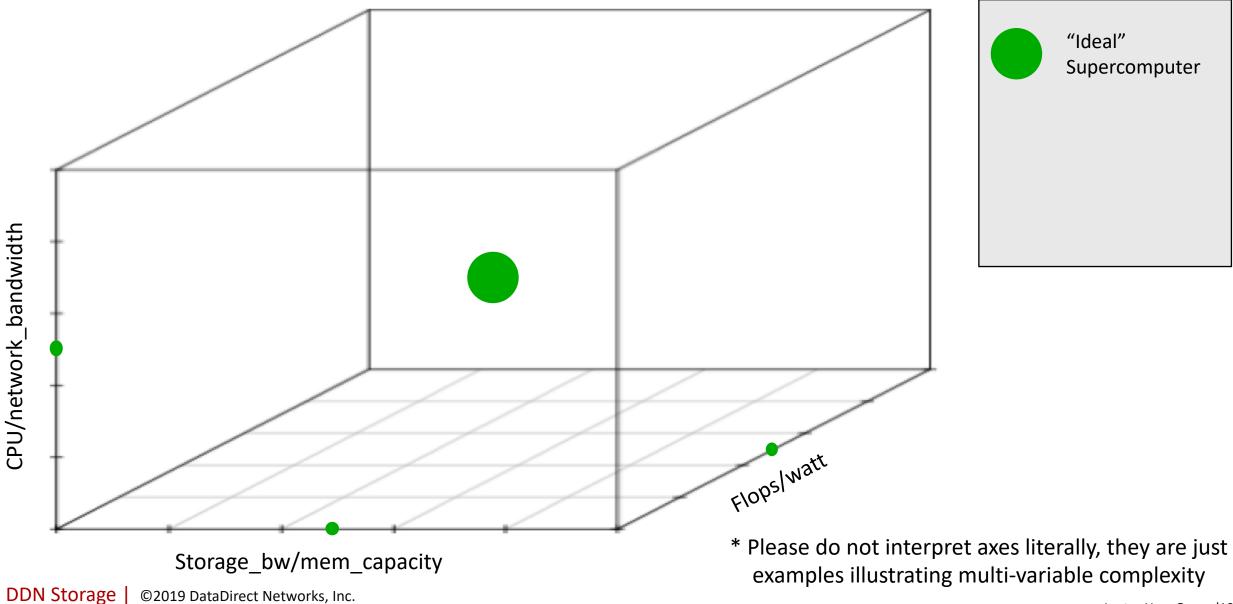
Create more realistic user expectations

- Provide performance bounds for users who don't know what to expect
- Make both hero **and** anti-hero results available for each test

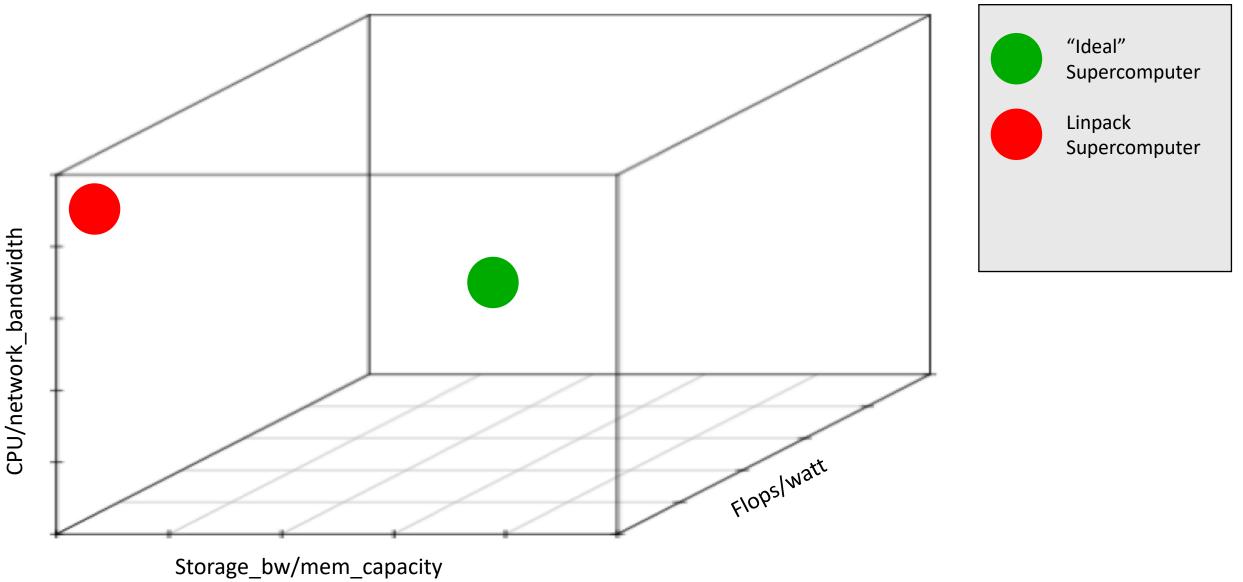
Public repository of all results

- Component results and tunables used to achieve them
- Record history of storage systems
- Encourage balanced systems
 - Don't focus on just a single metric
- Easier RFP writing
 - Empathy for procurers who struggle to define an "ideal" system
- Better storage products
 - Focus developers and vendors on improving performance seen by end users

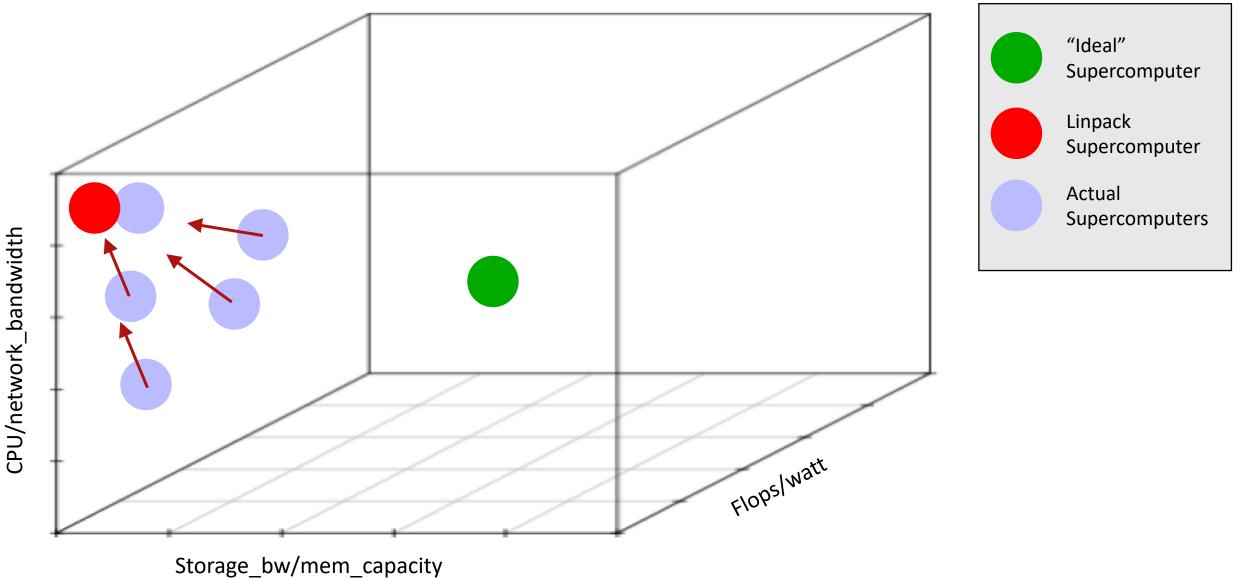
IO-500 ...But Why Do We Really Need an IO-500?


Storage is central to a system's ability to generate science/results

- Typically under-budgeted compared to CPUs
- Anything that isn't measured cannot be improved
- Hard to explain storage intricacies and application interactions


Non-experts have no easy way to compare different storage systems

- Provide a "single number" for easy/fast comparison ...
- ... with additional metrics to allow more in-depth comparisons
- Elevate storage visibility to allow balanced compute platforms
 - Motivator to improve storage with minimal effort
- Leave the world a happier and better place than we found it


IO-500 A Legitimate Concern About Linpack

IO-500 A Legitimate Concern About Linpack

IO-500 A Legitimate Concern About Linpack

IO-500 Overall System Balance Is Lacking

IO-500 is designed to be balanced and, in being so, will help restore balance to supercomputing and the storage systems that feed it.

IO-500 | Balance Demonstrated Via Multiple Measurements

Hero bandwidth

• Write and read - 5 minutes, typically with large, aligned chunks

Anti-hero bandwidth

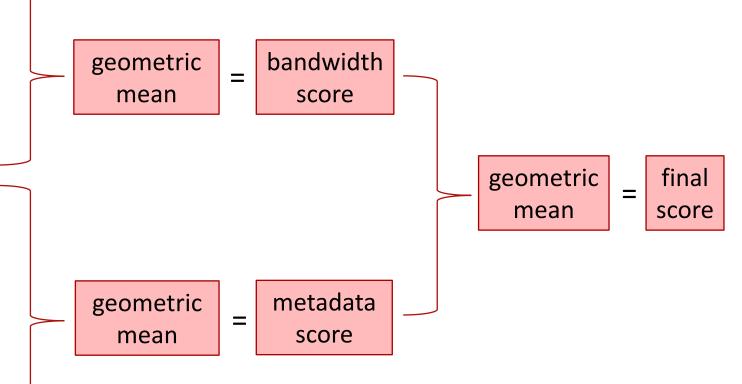
• Write and read - 5 minutes, unaligned, interleaved, multi-client

Hero metadata

• Create, stat, delete - 5 minutes, separate directory per thread

Anti-hero metadata

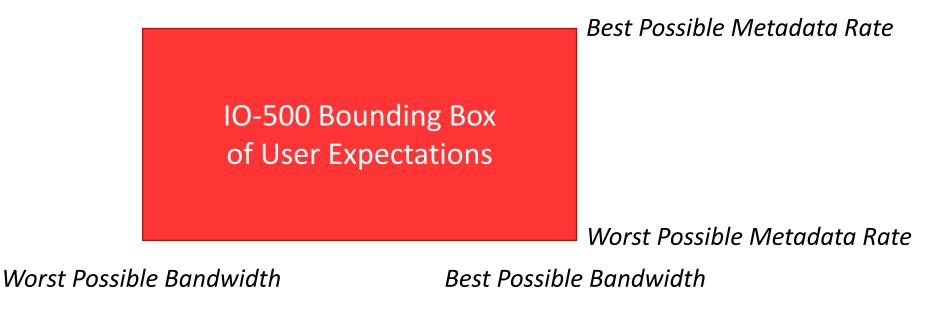
• Create, stat, read, delete - 5 minutes, single directory for all threads


And a namespace search

• Search created files - parallel if you have it

IO-500 | Aggregate Final Score Difficult to Game

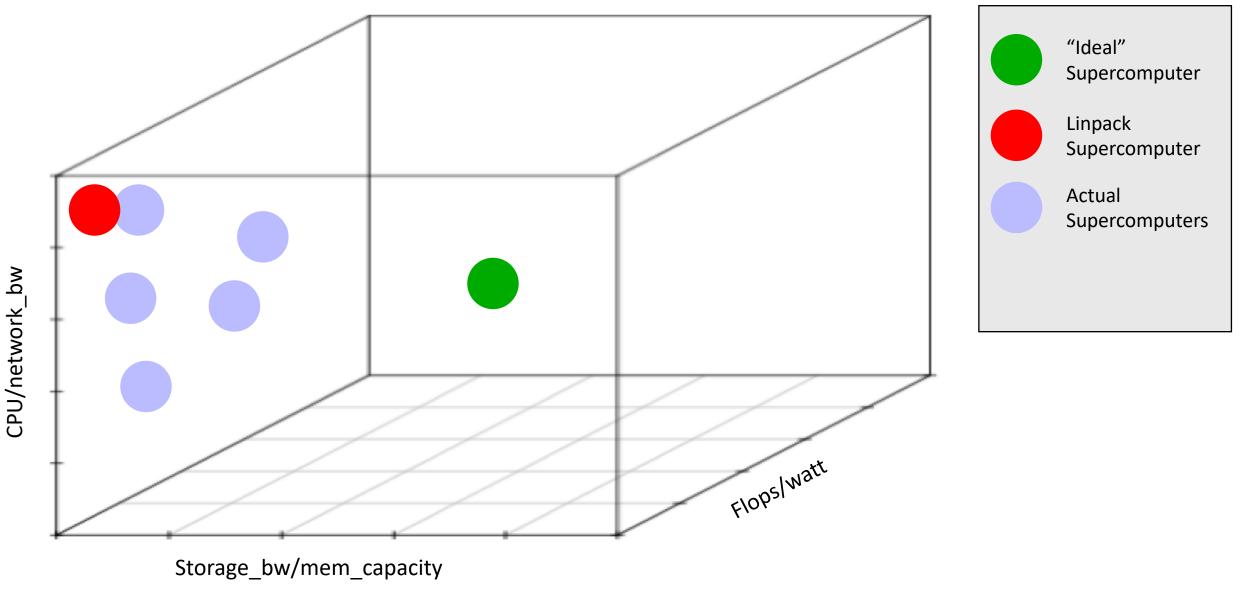
Hero bandwidth


- Write and read
- Anti-hero bandwidth
 - Write and read
- Hero metadata
 - Create, stat, delete
- Anti-hero metadata
 - Create, stat, read, delete
- And a namespace search
 - Search created files

IO-500 Bounding Box of Expectation

"We tried 20 years ago. It's impossible to create a single representative benchmark."

• Great point! We won't try, our bounding box includes them all.



BOLD CLAIM

IO-500 cannot be gamed.

Whatever is done to improve IO-500 scores will result in a better storage system for applications.

IO-500 | IO-500 Restores Balance

IO-500 Brings Balance to New Systems

IO-500 | Third List at SC'18

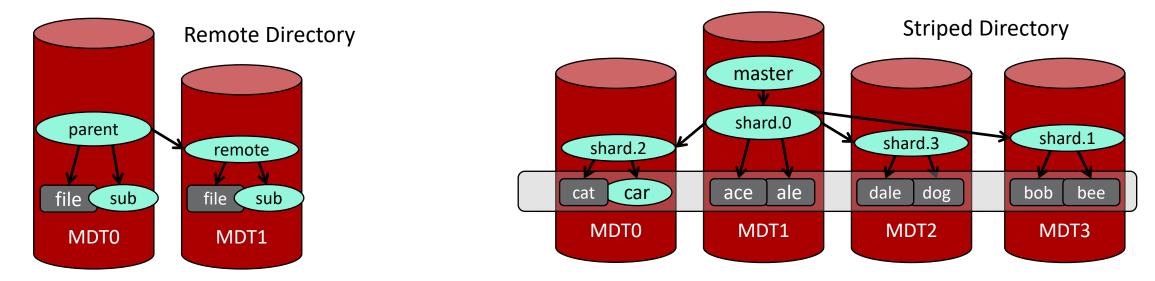
#	information						io500			
	institution	system	storage	filesystem	client	client total	data	<u>score</u>	bw	md
			vendor	type	nodes	procs			GiB/s	kIOP/s
1	Oak Ridge National Laboratory	Summit	IBM	Spectrum Scale	504	1008	zip	330.56	88.20	1238.93
2	University of Cambridge	Data Accelerator	Dell EMC	Lustre	528	4224	zip	158.71	71.40	352.75
3	Korea Institute of Science and Technology Information (KISTI)	NURION	DDN	IME	2048	4096	zip	156.91	554.23	44.43
4	JCAHPC	Oakforest- PACS	DDN	IME	2048	16384	zip	137.78	560.10	33.89
5	WekalO	WekalO	WekalO		17	935	zip	78.37	37.39	164.26
6	KAUST	ShaheenII	Cray	DataWarp	1024	8192	zip	77.37	496.81	12.05
7	University of Cambridge	Data Accelerator	Dell EMC	BeeGFS	184	5888	zip	74.58	58.81	94.57
8	Google	Exascaler on GCP	Google	Lustre	120	960	zip	47.23	23.06	96.74
9	JCAHPC	Oakforest- PACS	DDN	Lustre	256	8192	zip	42.18	20.04	88.78
10	KAUST	ShaheenII	Cray	Lustre	1000	16000		41.00*	54.17	31.03*

IO-500 | History of Lustre Submissions

List	Event	Total Site Submissions	Total Lustre Submissions	Highest Lustre Rank
1	SC'17	9	3	3
2	ISC'18	12	5	3
3	SC'18	26	8	2
4	ISC'19	?	More, please	?

Lustre is about 70% of Top-100 systems, so should make up more than 30-40% of the IO-500

I encourage sites to submit results for new and old storage systems, 10-Client Challenge


Sites can submit separate results for different storage tiers, different parameters, etc.

• Only the top score for each storage system will be a candidate for the bi-annual IO-500 list

IO-500 | Lustre Metadata Tuning Tips

Lustre supports two types of distributed metadata

• Remote Directory (DNE1) and Striped Directory (DNE2)

- Files and subdirectories stay on a local MDT by default, want to use all MDTs
- Use "lfs mkdir" to stripe test directory and inherited default over all MDTs
 - # lfs mkdir -c 4 /scratch0/io500
 - # lfs mkdir -c 4 -D /scratch0/io500

IO-500 | Lustre I/O Tuning Tips

- Client Side setting
- # lctl set_param \

```
osc.*.max_pages_per_rpc=16M \
osc.*.max_rpcs_in_flight=16 \
llite.*.max_read_ahead_mb=2048 \
osc.*.checksums=0
```

Server Side setting

Send more aggressive RPCs to server and readahead

Avoiding Page Cache on OSS when it flushes data to disk


lctl set_param \

osd-ldiskfs.*.read_cache_enable=0

obdfilter.*.writethrough_cache_enable=0

That's all changed parameters and configuration from default EXAScaler setting

IO-500 EXAScaler 5.0-pre Test Configuration (SC'18) 10-Client Challenge "Bancholab"

IO-500 EXAScaler 5.0-pre Test Results (SC'18) 10-Client Challenge "Bancholab"

\$ git clone https://github.com/VI4I0/io-500-dev

\$ cd io-500-dev

\$./utilities/prepare.sh

\$ vi io500.sh \$./io500.sh

provides fairly good directions for what to edit in the file # to run directly, otherwise via batch submission script

[RESULT] BW phase 1	ior_easy_write	37.540 GB/s : time 343.38 seconds
[RESULT] IOPS phase 1	<pre>mdtest_easy_write</pre>	199.685 kiops : time 325.87 seconds
[RESULT] BW phase 2	ior_hard_write	0.262 GB/s : time 300.21 seconds
[RESULT] IOPS phase 2	<pre>mdtest_hard_write</pre>	24.348 kiops : time 395.55 seconds
[RESULT] IOPS phase 3	find	3332.110 kiops : time 21.96 seconds
[RESULT] BW phase 3	<pre>ior_easy_read</pre>	35.374 GB/s : time 364.41 seconds
[RESULT] IOPS phase 4	<pre>mdtest_easy_stat</pre>	527.669 kiops : time 124.08 seconds
[RESULT] BW phase 4	ior_hard_read	4.627 GB/s : time 17.03 seconds
[RESULT] IOPS phase 5	<pre>mdtest_hard_stat</pre>	79.476 kiops : time 106.64 seconds
[RESULT] IOPS phase 6	<pre>mdtest_easy_delete</pre>	226.094 kiops : time 288.22 seconds
[RESULT] IOPS phase 7	mdtest_hard_read	46.141 kiops : time 182.72 seconds
[RESULT] IOPS phase 8	<pre>mdtest_hard_delete</pre>	58.842 kiops : time 143.64 seconds
[SCORE] Bandwidth 6.33725	GB/s : IOPS 159.413 kiops	5 : TOTAL 31.7843

Thank You!

Keep in touch with us.

sales@ddn.com

@ddn_limitless

company/datadirect-networks

9351 Deering Avenue Chatsworth, CA 91311

1.800.837.2298 1.818.700.4000

