
ORNL is managed by UT-Battelle
for the US Department of Energy

Flexible Lustre
management

Making less work for Admins

How do we know Lustre condition today

• Polling proc / sysfs files
– The knocking on the door model
– Parse stats, rpc info, etc for performance deviations.

• Constant collection of debug logs
– Heavy parsing for common problems.

• The death of a node
– Have to examine kdumps and /or lustre dump

Origins of a new approach

• Requirements for Linux kernel integration.

– No more proc usage

– Migration to sysfs and debugfs

– Used to configure your file system.

– Started in lustre 2.9 and still on going.

• Two ways to configure your file system.

– On MGS server run lctl conf_param …

• Directly accessed proc seq_files.

– On MSG server run lctl set_param –P

• Originally used an upcall to lctl for configuration

• Introduced in Lustre 2.4 but was broken until lustre 2.12 (LU-7004)

– Configuring file system works transparently before and after sysfs

migration.

Changes introduced with sysfs / debugfs
migration
• sysfs has a one item per file rule.
• Complex proc files moved to debugfs
• Moving to debugfs introduced permission problems

– Only debugging files should be their.
– Both debugfs and procfs have scaling issues.

• Moving to sysfs introduced the ability to send uevents
– Item of most interest from LUG 2018 Linux Lustre client talk.
– Both lctl conf_param and lctl set_param –P use this approach

• lctl conf_param can set sysfs attributes without uevents. See class_modify_config()

– We get life cycle events for free
– udev is now involved.

What do we get by using udev ?
• Under the hood

– uevents are collect by systemd and then processed by udev rules
– /etc/udev/rules.d/99-lustre.rules
– SUBSYSTEM=="lustre", ACTION=="change", ENV{PARAM}=="?*",

RUN+="/usr/sbin/lctl set_param '$env{PARAM}=$env{SETTING}’”

• You can create your own udev rule
– http://reactivated.net/writing_udev_rules.html

– /lib/udev/rules.d/* for examples
– Add udev_log="debug” to /etc/udev.conf if you have problems

• Using systemd for long task.
– ACTION==”change", SUBSYSTEM==”lustre", TAG+="systemd",

ENV{SYSTEMD_WANTS}=”my-lustre.service"

– [Service] Type=oneshot
ExecStart=/usr/bin/echo ‘lustre tunable changed”

http://reactivated.net/writing_udev_rules.html

udev tools

• A database for udev configurations.
– Best keep secret.
– If you have many settings to configure just add them to

/lib/udev/hwdb.d/lustre and build your binary db.
– Read by system.d. Also can be queried.
– man hwdb

• udevadm is your friend
– Want to know what your attributes values are:

• udevadm info -a -p /sys/fs/lustre/osc/lustre-OST0001-osc-
ffff8d76a2646000

– Examine uevents directly:
• udevadm monitor -s lustre
• For file system tunables timestamps are include (2.13)

Future uevent support for Lustre

• Only tunable are handle as of 2.12
• LU-10756 list suggested items of interest
• Lustre import life cycle

– https://review.whamcloud.com/#/c/31407 (Incomplete)
– Evictions
– Recovery status

• obd device health checker
• Target mounts and state such as degraded.
• LBUGS

• Self healing file system

• Add polling to sysfs files - sysfs_notify()

• Other suggestions welcomed

https://review.whamcloud.com/

Future LNet uevent support

• LNet dynamic discover landed for 2.11 - LU-9480

• LNet network health landed to 2.12 - LU-9120

• LNet sysfs support for 2.13 release - LU-9667

• Events together provide infrastructure to support uevents for:

– LNet NID and Net notifications

– Network timeouts.

• Possible management of LNet using udev rules.

• Other suggestions welcomed.

Writing applications for udev usage

• Udev helper library – libudev

– Simply sysfs access in some cases

– udev_monitor_*() to detect events

• Xorg video device plugins

• D-Bus is aware of udev events

– Example is USB stick insertion (udisk) and network management

– https://www.freedesktop.org/wiki/Software/dbus/

– Applications need libdbus

– /usr/share/dbus-1 example of configurations

• Can use D-Bus as a message bus

– Support of interprocess communication

– D-Bus can communicate between different nodes.

https://www.freedesktop.org/wiki/Software/dbus/

Impact of debugfs
• Complex proc files moved to debugfs

– Not the purpose of debugfs.
– Both proc and debugfs files don’t scale well.

• https://lwn.net/Articles/406975 (taskstats)
– Only root can access it by default.
– Good news we don’t have many debugfs files

• Replace with Netlink
– Designed to replace ioctls – RFC 3549
– Scales far better
– Support multi packets so no size limitation.
– Very flexible with API changes.
– Container aware
– Should work better with I/O forwarding systems.

https://lwn.net/Articles/406975

LNet Netlink implementation

• Iibrary interface being developed for liblnetconfig : LU-9680

– Simplify working with libnl API

– Enables vendor specific hooks for their products

• Rewrite of LNet selftest to use Netlink

– Kernel module is unacceptable by kernel standards

– Current LNet self test is very fragile

– Netlink version could be used to monitor live traffic

• LNet User Defined Selection Policy : LU-9121

– Will land to 2.13

– Currently ioctl based which is inflexible in the long run

Lustre Netlink implementation

• Use Netlink for device listing with ‘lctl dl’ : LU-8066
– Non root permission problem with ‘devices’ debugfs file
– Could be very large which is expensive with seq_files
– Ioctl exist but is really awful.

• Use Netlink for stats : LU-11850
– Far more scalable.
– Will be transparent to user with lctl get_param.

• New better interface will be create using YAML
– Can be made configurable – only return stats of interest

• Many times proc stat files have changes
• Could control what stats are even collected!! Memory saver..

– Different Netlink groups exist for stats.
• No need to open many proc files to gather stats.

Other Lustre Netlink uses

• Fixing lustre ioctl handling : LU-6202
– Use struct obd_ioctl that is similar to Netlink headers
– Lustre uses ioctl redirection which is frowned on by kernel development

community.

• Replace KUC with netlink : LU-7659
– KUC is used by HSM but was designed with other uses in mind.
– Currently it uses a pipe which is not recommend.

• https://www.linuxjournal.com/article/8110

• Use Netlink to implement external HSM coordinator : LU-10968
• Suspect other uses in the future

https://www.linuxjournal.com/article/8110

Conclusion

• Greater Lustre + LNet state awareness
• Greater flexibility with Netlink
• Better performance and scalability

• Questions?

