

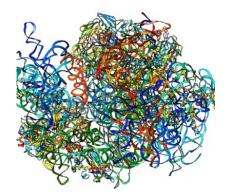
MONASH eRESEARCH

Monash High Performance Computing

Gin Tan Senior HPC Consultant

MeRC (Monash eResearch)

Monash HPC Infrastructure MASSIVE MonARCH Characterisation VL and Instruments


MASSIVE-3

MeRC Infrastructure

63+ million CPU-core hours p.a. of computing time for Monash researchers

Monash University is the largest user of national merit allocated supercomputing time **40+** peak instruments integrated at Monash

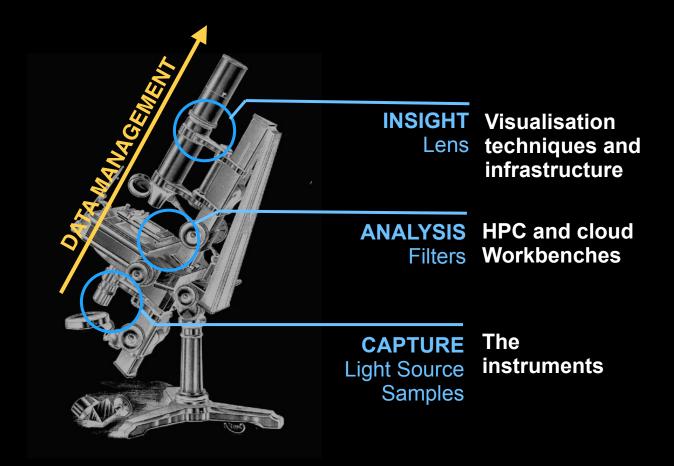
National Instrument integration program:

60+ instruments across Australia (\$250M+ capital)

MASSIVE time requests through national merit is 5x what is available

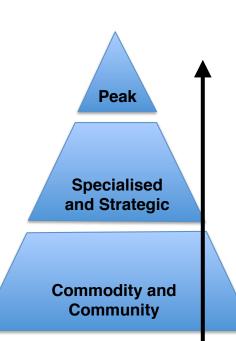
5X oversubscription

\$3.4m p.a. of research cloud access from contribution of \$250k p.a.


10+ petabytes of research storage

MeRC (Monash eResearch)

Monash HPC Infrastructure NCI and NCMAS MASSIVE MonARCH Characterisation VL and Instruments


MASSIVE-3

HPC Infrastructure

MONASH University

Peak, Specialised and Community

National Computational Infrastructure

Big engineering and science Existing big users Well established requirements Next generation of big HPC users

MASSIVE

Leadership in Characterisation Instrumentation and Accessible HPC HPC for new communities

Monash Campus Cluster

Long tail Undergrad and Postgrad Education Research group solutions Play pen

Outcomes

- 1. Monash has built a respected capability in high performance computing and is very strong in peak areas of computational science;
- 2. Monash is a leader in NCRIS characterization informatics, which is providing significant benefit to researchers, infrastructure and future investment / leverage;
- 4. Monash is unique in building strong capability for the long tail of non-traditional HPC users (in particular life sciences);
- 5. Monash is now consistently the top merit allocation user of the NCI;
- 6. Monash researcher have access to dedicated local expertise and resources;

MASSIVE

HPC for Characterisation Specialised Facility for Imaging and Visualisation

~\$2M per year funded by partners and national project funding **Partners**

Monash University Australian Synchrotron CSIRO University of Wollongong

Affiliate Partners

ARC Centre of Excellence in Integrative Brain Function ARC Centre of Excellence in Advanced Molecular Imaging

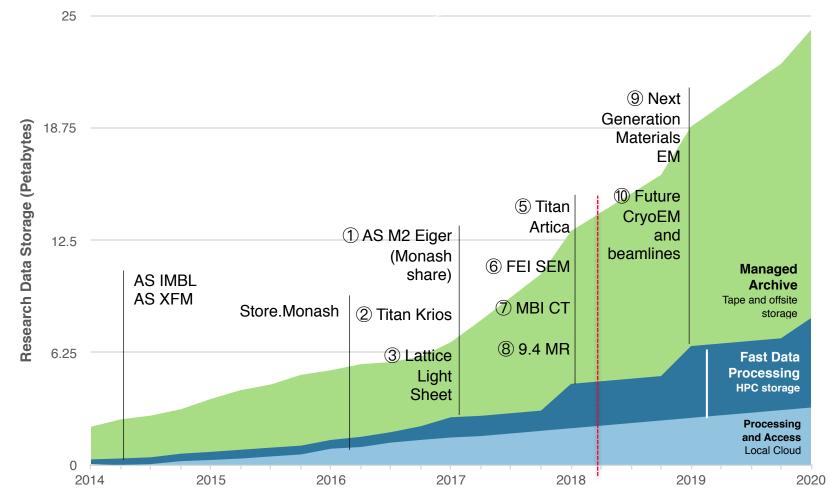
HPC

150+ active projects2,000+ user accounts100+ institutions across Australia

Interactive Vis

600+ users

Instrument


Integration Integrating with key Australian

Instrument Facilities.

- IMBL, XFM, MX2
- CryoEM
- MBI
- NCRIS: NIF, AMMRF

Large cohort of researchers new to HPC

10+ Big Data and Big Collection Generating Instruments at Monash University

Life sciences focus

Breakdown of usage - FOR codes

M1 & M2 (2011 onward)	I	M3 (2017 onward)	-
09 ENGINEERING	40.03%	11 MEDICAL AND HEALTH SCIENCES	42.35%
02 PHYSICAL SCIENCES	13.06%	06 BIOLOGICAL SCIENCES 17 PSYCHOLOGY AND COGNITIVE	30.14%
11 MEDICAL AND HEALTH SCIENCES	10.64%	SCIENCES	10.09%
08 INFORMATION AND COMPUTING SCIENCES	9.45%	08 INFORMATION AND COMPUTING SCIENCES	5.17%
06 BIOLOGICAL SCIENCES	8.07%	09 ENGINEERING	4.47%
17 PSYCHOLOGY AND COGNITIVE SCIENCES	7.23%	02 PHYSICAL SCIENCES	4.27%
Oher	11.53%	Oher	3.49%

MonARCH

Community

Campus Cluster

Provide Monash researchers with a local capability that focuses on engagement, education and community.

Investment

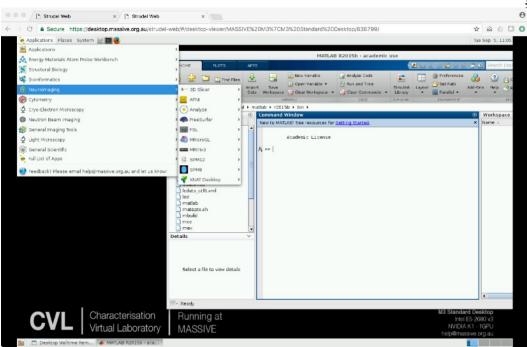
A co-investor model Examples include Computational Chemistry, Astro and Fluid Dynamics 1/3rd of MonARCH is co-purchased

Integrated into undergraduate study CHM3911 Advanced Physical Chemistry

80 students across 3 practical sessions Gaussian and GaussView for calculations

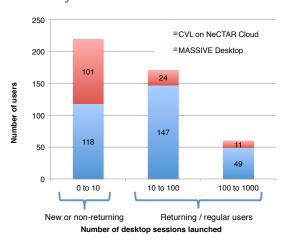
Students taught how to use a HPC system to perform their calculations

MeRC (Monash eResearch)


Monash HPC Infrastructure NCI and NCMAS MASSIVE MonARCH Characterisation VL and Instruments

MASSIVE-3

Remote Desktops


Workbenches

Deployed on the research cloud and alongs ¹

400 NeCTAR Cloud 350 CVL project 300 start 250 First automated 200 desktops 150 100 Mar-11 May-11 Jul-11 0

Bioinformatics, Cytometry, Cryo-Electron Microscopy, Neutron Beam Imaging, General Imaging Tool, Light Microscopy, General Scientific, X-ray

http://desktop.massive.org.au

Monash Research Cloud

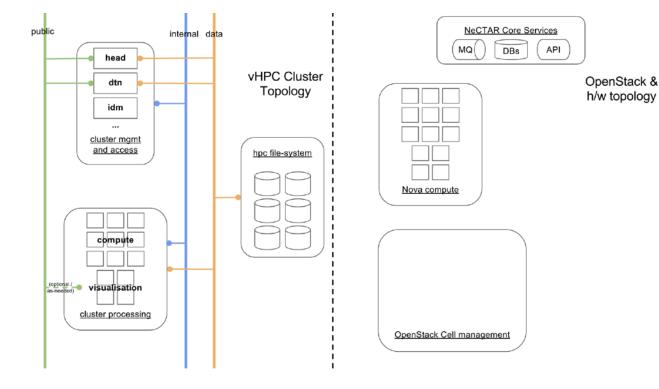
R@CMon

- A fabric of software defined infrastructure
 - networking: Cumulus + Mellanox RoCE
 - compute orchestration: OpenStack
 - disk: Ceph
 - tiering: watch this space
- CIFS, NFS, VDI, jupiter-VL, NSP, HPC, MyTardis, Figshare, safe havens, ... (growth here)
- Network fabric spans 2x data centres and the "Clayton precinct"
- Network is heterogeneous but adaptable between: Ethernet & RoCE, and 10-100gb

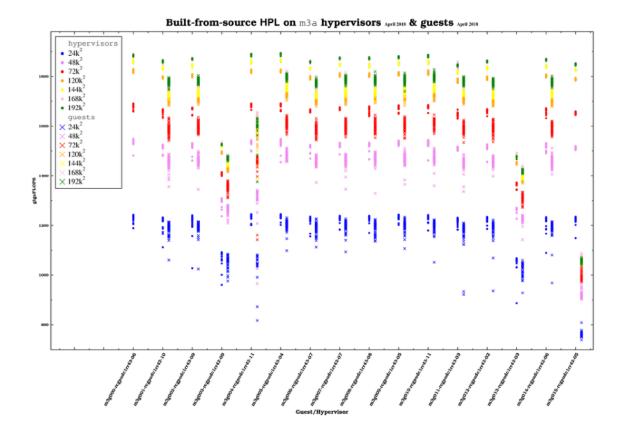
Nodes	209
CPUs	6372
Threads	10136
RAM	46624 GBs
GPUs	145
Persistent disk	8792 TBs
Persistent tiered	~8000 TBs
Users	~5000

MeRC (Monash eResearch)

Monash HPC Infrastructure NCI and NCMAS MASSIVE MonARCH Characterisation VL and Instruments


MASSIVE-3

- The third generation MASSIVE supercomputer
- It's a bit different from traditional HPC
- HPC on the cloud
- Pass-through Mellanox CX-3 and CX-4 HCA
- -Pass-through GPUs K1, K80, P100, V100
- High demand for Vis jobs
- -Segregation and security
- RDMA over Ethernet (RoCE)
- Running software in singularity container
- -Running Slurm v17 fixes kmem cgroup constraint


M3 at Monash University

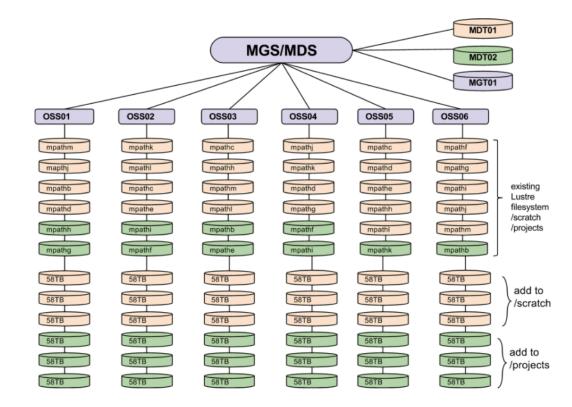
vHPC

- numa topology
- CPU tuning
- THP
- around 40 runs
- 1.6 TFlops
- OpenMPI v2.1.3
- GCC v5.4.0
- Intel MKL 2017u4
- Singularity 2.4.5

HPL

M3 at Monash University (2018 upgrade)

1,600 Intel Haswell CPU-cores 2,520 Intel Skylake CPU-cores


NVIDIA GPU coprocessors for data processing and visualisation:

- 48 NVIDIA Tesla K80
- 40 NVIDIA Pascal P100
- 60 NVIDIA Volta V100
- · 2 NVIDIA DGX1-V
- 8 NVIDIA Grid K1 GPUs for medium and low end visualisation

A 1.1 petabyte Lustre parallel file system **A 3 petabyte Lustre parallel file system usable after upgrade**

100 Gb/s Ethernet Mellanox Spectrum

Lustre Storage upgrade to 3PB

What don't we have? Why not GPFS:

- ZFS/NFS
- glusterFS
- IBM GPFS
- Ceph FS
- Lustre FS

- Proprietary
- Communities for the workflow
- General HPC e.g. simulation
- Maintenance cost & effort

Why Lustre:

- Clusters are sitting on Openstack research cloud
- Cinder driver for Openstack
- Community support
- Recently upgraded from 2.5 to 2.10.3
- Taking advantage of sub-dir mount in the cloud
- Progressive file layout for mixed use environment

IML

- Intel Manager for Lustre
- Managed mode
- Admin training
- Provide job stats
- And monitoring

Thank You

email: gin.tan@monash.edu url: www.massive.org.au

Questions?