
C O M P U T E | S T O R E | A N A L Y Z E

Lustre Feature Renaissance

Nathan Rutman
Lug 2018

C O M P U T E | S T O R E | A N A L Y Z E

14 Years of Scaling
G

B/
s

C O M P U T E | S T O R E | A N A L Y Z E

Years of effort spent on performance and scaling

Not an exhaustive list
● ldiskfs scaling, ZFS
● Recovery: interop, VBR, AT, FSCK, Imperative Recovery
● CLIO, MDS rewrite, FIDs
● IO scaling: LRU, read cache, readahead, wide striping,

multi-MB rpc, DoM
● MD scaling: statahead, DNE, MMR
● tons of diverse performance improvements
● bugs bugs bugs
Features too of course: mountconf, Kerberos, NRS, HSM,
changelogs, pools, multirail

C O M P U T E | S T O R E | A N A L Y Z E

Capable infrastructures in place

● DNE – MD horizontal scaling
● Complex layouts – much more interesting data placement
● FLR – data redundancy inside Lustre

Time to reap some Feature rewards

● Let’s look at some possible features
● These aren’t even designs, just ideas

C O M P U T E | S T O R E | A N A L Y Z E

FLR – data redundancy inside Lustre
● One small (?) step for Layouts, one giant leap for Lustre systems

design
● No longer need to rely on Failover for data access
● Dual-ported, dual-server, dual-path, dual-$ - nope.
● Need:

● FLR2 = immediate – client writes data durably
● FLR3 = EC – boo 100% overhead, yay 20% overhead
● Degraded write support. Track changes for reintegration, or asymmetric layouts?

C O M P U T E | S T O R E | A N A L Y Z E

Spillover Space: death to ENOSPC
● Self-extending PFL (LU-10070, LU-10169)
● Some PFL segments are virtual, instantiated on demand
● Request in a virtual segment requires layout update
● MDS adds a new component on demand
● Can choose the new component striping based on

dynamic conditions (e.g. free space)

[0,10)initial

extending segment

[10,100) 4stripe +100,500M ssd

[0,10) [10,100) 4stripe [100,200) ssdr/w request
past 100

[0,10) [10,100) 4stripe [100,200) ssdr/w request
past 300 [200,300) ssd

+100,500M ssd

(300,∞] hdd

reach specified max, or insufficient space on ssd

(,∞] hdd

(,∞] hdd

C O M P U T E | S T O R E | A N A L Y Z E

ILM Layouts
● Layout implies an action: stale FLR copy = resync w/ lfs mirror
● And a timeframe: (immediate | eventual)
● Simple ILM policy already encoded into layout
● Add some flags to layout and/or policy ref
● Make HSM a true layout (LU-10606): stale HSM copy = resync w/ lfs hsm
● Use Coordinator and Copytool for all movement (LU-6081)

SSD

8+2 EC HDD

Primary

Secondary

HSM ArchiveTertiary

☑ sync immed
☐ purge after sync
☐ immutable
☑ restore here

☐ sync immed
☑ purge after sync
☐ immutable
☐ restore here

☑ sync idle
☐ purge after sync
☑ immutable
☐ restore here

C O M P U T E | S T O R E | A N A L Y Z E

Asymmetric Layouts
● Reads go to R iff not in W
● Block bitmap on W tracks newly written data
● Client caching and DIO insure full-page writes
● W controls all locks, gives bitmap along with lock grants
● Clients access R or W directly, all under W’s locks

W layer

readwrite

R layer

Asym Layout Block bitmap

● Write to flash, read from HDD
● Continue writing to new W if an OST fails (checkpoint) (or ENOSPC)
● EC degraded write case – point of EC is to remain usable in failuresW

hy
?

C O M P U T E | S T O R E | A N A L Y Z E

Fast Find

● Why do we copy Lustre MD into DB’s or scan raw ldiskfs?
● Need to quickly find files that match certain criteria
● A great ‘lfs find’ could do the same thing, saving the tools

effort
● Server side. RPC from client, returns filtered list
● Logical combinations of filters
● Unix-style piping: lfs find /lustre -size +20M | lfs hsm archive

● Add new MDT indices to efficiently generate initial
candidate lists
● LRU, file heat, mtime, size
● dt_index_operations (eg IAM) provides generic indexing code
● Update indices transactionally with MD updates

C O M P U T E | S T O R E | A N A L Y Z E

Rough SoM

● FLR records file size on MDS; comes with sync
● DoM records file size on MDS
● Straightforward to get maximum size, if we don’t care

about evicted/failover case
● Rough size is fine for many purposes (e.g. policies)
● Record the quality of SoM, let users decide if usable
● Strict, Rough, Stale, Unknown (LU-9538)
● Don’t return as POSIX size unless strict

C O M P U T E | S T O R E | A N A L Y Z E

Clone Files: extreme create scaling

● File create: ask MDS to create, lock dir,
create inode, assign objects

● Clone create: create “all” the files at once
● Single MDS inode,

single namespace
entry: foo.#

● FID is prefix+#
● Layout is f(FID)

MDS Inode
/pdir/foo.#

uid,gid
perms
pdir
FID ABCD00xxxxx

Layout
canonical_ost_list
stripe_count, size
selected_osts = f(FID, c_o_l)

Client Inode
/pdir/foo.12345

uid,gid
perms
pdir
FID ABCD0012345

Layout
canonical_ost_list
stripe_count, size
selected_osts = f(FID, c_o_l)
= {x, y}

OST x

OST y

● Shared MD (clones!) but different objects / data / sizes
● open(foo.4,O_CREAT) is now a client-local operation

C O M P U T E | S T O R E | A N A L Y Z E

Alternate Consistency Models

● POSIX API vs POSIX consistency semantics
● Caching allow write coalesce, local latency
● But pay a penalty for locks
● Solutions in Lustre, but

requires effort
● Lockless DIO, Grouplocks

● Make it easier
● ladvise?
● Persistent file tags?
● Automatically change modes?

G
le

nn
 L

oc
kw

oo
d

ht
tp

s:
//w

w
w

.n
ex

tp
la

tfo
rm

.c
om

/2
01

7/
09

/1
1/

w
ha

ts
-b

ad
-p

os
ix

-io
/

SSF write (presumed)

C O M P U T E | S T O R E | A N A L Y Z E

All Together Now

C O M P U T E | S T O R E | A N A L Y Z E

Feature Vote?
1. FLR EC with degraded writes
2. Spillover Space
3. ILM Layouts
4. Asymmetric Layouts
5. Fast Find
6. Rough SoM
7. Clone Files
8. Alternate Consistency Hints

C O M P U T E | S T O R E | A N A L Y Z E

Implementation Plan

1. Ignore Nathan’s slideware
2. <insert smart developer here>

3. Implement!

