

T10PI End-to-End Data Integrity Protection for Lustre

Shuichi Ihara, Li Xi

2018/04/25

DataDirect Networks, Inc.

Why is data Integrity important?

Data corruptions is painful!

- Frequency is low, but cost is very high.
- A lot of unusual operations and step by step procedures to recover.

What causes data corruptions?

- Facility
- Hardware include network
- Software
- Human errors

Type of data corruption

Two types of data corruption

- Latent sector/block errors
 - Application can't read sector/block and return an error.
- Silent data corruption

 Application can read sector/block, but it's NOT expected data and NOT valid data.

Silent data corruption causes another corruptions

 Application read data as expected and write new data based on it, but it's wrong!

Where/Why this happens?

- All storage stacks(App, OS, HBA, Storage Fabric/Array, Disk)
- Lack of integrity check, each storage stack trusts upper/lower comportment.

Data Integrity of Lustre

Lustre checksum

- Checksum on between OSCs and OSTs.
- Prevent server/client wrong RPC handling if it's corrupted.
- No store checksums into Disks.

Backend Storage

- metadata checksum is available in Ext4, but not supported in Lustre.
- ZFS has very strong mechanism for data Integrity
 - CoW, Transaction based, End-to-End checksum, Scrub, etc..
 - Data integrity inside ZFS.

Is this enough?

- Still missing guarantee on some places.
 - After sever received RPCs (e.g. Memory corruptions, OS to HBA to Storage Array, etc)
- There was Lustre End-to-End Data Integrity discussion(LU-2584)
 - Proposed T10 PI/DIX support and submitted patches by Xyratex
 - Required to replace whole Lustre checksum with new T10PI/DIX checksum

T10PI(DIF) and DIX(Data Integrity Extensions)

5

The standard specify an additional 8 byte field designated for data integrity/protection for each data block.

Proposed Design of Lustre End-To-End Data Integrity

- Fully transparent End-to-End Data integrity from Lustre client to disk.
- Relies on open standard format T10PI/DIX and any T10PI/DIX supported hardware work.
- Don't change Lustre RPC format and extends current Lustre checksum framework.
- Consider minimum performance impacts.
- Keep compatibility for old Lustre version or non-T10PI supported hardware.

Basic flow of Lustre End-to-End Data Integrity

Today's Lustre checksum(Write)

Today's Lustre checksum(Read)

9

Lustre checksum with T10PI/DIX for Enabling End-to-End Data Integrity(Write)

Lustre checksum with T10PI/DIX for Enabling End-to-End Data Integrity(Read)

11

STORAGE

© 2017 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

12 Status

Task is tracked under LU-10472

- Patch being to submit for review
 - T10PI support for BIO https://review.whamcloud.com/#/c/31513
 - T10PI support for Lustre checksum (https://review.whamcloud.com/#/c/30980)
 - T10PI support for page cache (https://review.whamcloud.com/#/c/30792)
- Cleanup and optimization are ongoing to finalize patches

Started function test and benchmark

- Adding test codes
- Fault injection
- Comparing performance against today's Lustre checksum

13 Test Environment

1 x MDS

- 2 x E5-2640v3, 256GB Memory, 1 x EDR Infibanind
- 1 x LSI SAS3008(Enabled T10PI/DIX)

1 x OSS

- 2 x E5-2640v3, 256GB Memory, 1 x EDR Infibanind
- 1 x LSI SAS3008(Enabled T10PI/DIX)

▶ 1 x SS8462

 8 x NL-SAS and 2 x SAS disks connected to OSS/MDS with SAS

6 x Client

- 2 x E5-2660v3, 128GB Memory, 1 x EDR Infibanind
- Use IOR with Lustre Fake-IO

Performance Comparison – Single Client (FPP, Sequential, Write)

© 2017 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

Performance Comparison- Single Client (FPP, Sequential, Read)

DDN

15

© 2017 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

16 Performance Comparison - Multi Client/ Single Server(FPP, Sequential, Write)

17 Performance Comparison- Multi Client/ Single Server(FPP, Sequential, Read)

18 Conclusions

Designed Lustre End-to-End Data integrity

- Reused current Lustre checksum design and expended with T10PI/DIX.
- Flexible and adaptable to any T10PI/DIX supported hardware and software.
- Very minimum performance impacts.

Further Work

- Cleanup and shape the codes and add additional test codes.
- Continue benchmark and test many failure scenarios on entire End-to-End comportment.

