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Overview 

§  Small File I/O Concerns 

§  Data on MDT (DoM) Feature Overview 

§  DoM Use Cases 

§  DoM Performance Results 

§  Small File I/O Improvements Beyond DoM 
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§  Small file data uses a single OST 
–  No parallel access to data 

§  Random I/O patterns 
–  More seeking to access data 

–  More latency sensitive 

–  Slows down concurrent streaming I/O 

§  Data is small 
–  Can't do data read-ahead 

–  More RPCs for the same amount of data 

DoM can help! 

§  Aims to improve small file I/O 
performance 

§  Stores small file data directly on the MDT 

§  DoM files grow on OSTs after the MDT 
size limit is reached 

§  Feature was introduced in Lustre 2.11.0 

Small File I/O Concerns 



DoM Feature Foundation 

§  Avoids extra RPCs – less RPC pressure on OSTs (more on MDT) 
–  DLM locks, attributes, read RPC, glimpse 

§  Separates large and small I/O data streams 
–  Less I/O overhead on OSTs 
–  Avoid blocking small I/Os behind large streaming I/O workloads 

§  New benefits from data residing on MDT(s) are possible 
–  Data is accessible during metadata operations 
–  File size is immediately available 

§  MDT servers are often faster, a factor leading to increased performance 
–  Difference in storage types can affect performance significantly 
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DoM Implementation Overview 

§  The Progressive File Layout (PFL) feature is the foundation 
–  The PFL file starts with the first component on the MDT 
–  The file will grow to OSTs when the MDT size limit is reached 

§  A new layout for DoM files is introduced

–  Example: lfs setstripe –E 1M –L mdt … <path> 

§  Client was modified to send I/O requests to an MDT 
§  MDT was modified to serve incoming I/O requests 

–  New I/O service threads 
–  I/O methods on the MDT 
–  MDT and OST become nearly the same for I/O request handling 
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Where can DoM help? 

§  Accessing small file data residing on an MDT 
–  read and stat operations 

–  Further improvements in DoM Phase 2 planned, e.g. read-on-open 

§  Reducing the amount of small random I/O on OSTs 
–  Better streaming I/O results on OSTs 

–  Improved latency of OSTs handling streaming I/Os 

–  Especially for OSTs with HDDs and RAID-5/6 redundancy 

§  MDT has better storage, e.g. NVMe vs HDDs on OSTs 
–  Re-use this potential for small files without need for OSTs upgrade 
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Where is DoM not ideal? 

§  Write patterns in general 
–  DoM not much better for writes if OST and MDT hardware is identical 
–  DNE may help with this, pending targeted phase 2 optimization 

improvements 
–  Helps to improve OSTs streaming writes indirectly 

–  Combined write efficiency between small and large I/O workloads 

§  File create and other metadata operations 
–  Metadata operations will have the same result for small files in DoM 

–  A DoM file create needs extra work for a special layout 
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DoM Limits 

There are two parameters to control DoM limits: 

§  Per-file Value 
–  Amount of a file’s data to store on the MDT 
–  Generated on file creation as size of the first component 

–  It can be set directly or inherited from the parent directory 

§  Per-MDT Parameter 
–  Maximum data size allowed by the server 

–  Can be changed and saved in config 
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Setting DoM Stripe Value 

The ‘lfs setstripe’ command is the tool to perform this action. 

-  Create a new file with 1MB DoM component in PFL file: 

lfs setstripe –E 1M –L mdt –E EOF -c 4 <file>


-  Set default 64KB DoM component for a directory in PFL file: 

lfs setstripe –E 64K –L mdt –E 64M –c 1 –E -1 –c -1 –S 4M <dir>


-  Get information about DoM files: 

lfs getstripe [–L mdt] <file>


lfs find –L mdt <dir>
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lfs getstripe example output 
client$ lfs getstripe /mnt/testfs/dom/64M

  lcm_entry_count:   3

    lcme_id:             1

    lcme_extent.e_start: 0

    lcme_extent.e_end:   65536

      lmm_stripe_count:  0

      lmm_stripe_size:   65536

      lmm_pattern:       mdt 

    lcme_id:             2

    lcme_extent.e_start: 65536

    lcme_extent.e_end:   33554432

      lmm_stripe_count:  1

      lmm_stripe_size:   65536

      lmm_pattern:       raid0

            - 0: { l_ost_idx: 3, l_fid: [0x100030000:0x138a:
0x0] } 



lcme_id:             3

    lcme_extent.e_start: 33554432

    lcme_extent.e_end:   EOF

      lmm_stripe_count:  4

      lmm_stripe_size:   4194304

      lmm_pattern:       raid0

             - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x138b:0x0] } 
             - 1: { l_ost_idx: 2, l_fid: [0x100020000:0x138b:0x0] } 
             - 2: { l_ost_idx: 0, l_fid: [0x100000000:0x138a:0x0] } 
             - 3: { l_ost_idx: 3, l_fid: [0x100030000:0x138b:0x0] }


Display DoM Stripe Information 



Limiting DoM size on the MDT 

Main parameter is lod.<mdt_name>.dom_stripesize


•  Controls the maximum DoM component size on the server 

•  Disables DoM files on server when set to 0 

•  Runtime parameter setting and getting: 
# lctl set_param lod.*MDT0000*.dom_stripesize=65536


# lctl set_param -P lod.*.dom_stripesize=2M


# lctl get_param lod.*.dom_stripesize


•  Save parameter in config: 
# lctl conf_param fsname-MDT0000.lod.dom_stripesize=0
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Performance Testbed Architecture  
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Performance Testbed Architecture (cont.)  
1 MDS/1 MDT, 8 OSS/32 OST, 16 clients 
§  Servers:  10x Generic Lustre servers with two slightly different configurations 

–  Each system comprises of: 
–  2x Intel® Xeon E5-2697v3 (Haswell) CPUs, 1x Intel® Omni-Path x16 HFI, 128GB DDR4 2133MHz RAM 
–  8 with 4x Intel® P3600 2.0TB 2.5” (U.2) NVMe devices 
–  2 with 4x Intel® P3700 800GB 2.5” (U.2) NVMe devices 
–  1 with 2x Intel® S3700 400GB’s for MGT 

§  Clients:  16x 2S Intel® Xeon Scalable Compute nodes 
–  1x OpenHPC Headnode  
–  Hardware components: 

–  2x Intel® Xeon Scalable 6148 CPUs, 1x Intel® Omni-Path x16 HFI, 192GB DDR4 2466MHz, local boot SSD 

§  Fabric:  100Gbps Intel® Omni-Path 
–  None-blocking fabric with single switch design. 
–  Server optimisations: “options hfi1 sge_copy_mode=2 krcvqs=4 wss_threshold=70” 

–  Improve generic RDMA performance, only recommended on servers that do not do any MPI 

13 



14 

File Striping Cases 

§  OST file, 1 stripe 

§  OST file, -1 stripe 
–  8 stripes in this test scenario 

§  DOM file 

 

Benchmarks & Options 

§  IOR, FIO for detailed read/write 
–  File per process 

–  Random read/write 

§  compilebench, dbench 
–  Simulates user activity with target to metadata and 

small file operations 

Data-on-MDT Benchmarks 
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IOR, WRITE, sub-DoM size 
IOR … -t 8k/64k -s 16 -w -F -k -E -z -m -Z -i 4096 
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DoM showing improved performance as client count increases 
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IOR, READ, sub-DoM size 
IOR … -t 8k/64k -s 16 -r -F -k -E -z -m -Z -i 4096 
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DoM performance significantly better, especially for smaller reads  
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IOR, WRITE, over-DoM size 
IOR … -t 512k -s 16 -w -F -k -E -z -m -Z -i 4096 
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No write performance degradation for files over the DoM size limit 
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IOR, READ, over-DoM size 
IOR … -t 512k -s 16 -r -F -k -E -z -m -Z -i 4096 
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Compilebench 
Compilebench –D <dir> -i 10 -r 20 
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Not all cases show an improvement in DoM phase 1 and are a focus area for phase 2 



DoM Phase 2 

There is still a significant amount of work to do with DoM 

§  DOM+DNE optimization 

§  DOM file migration to/from OST and MDT-to-MDT 

§  Various optimizations for read and stat operations 

§  Performance fixes and improvements for known issues 
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DoM Phase 2:  DNE Optimization 

•  Not a primary target for DoM Phase 1 

•  DNE has good potential in improving DoM write operations 

•  Preliminary testing shows that it is scalable under high load 

•  DNE allows control for how MDTs are used in DoM 

•  LU-10895 
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DoM Phase 2:  Migration 

Add DoM migration support to lfs migrate (LU-10177): 
§  To MDT from OSTs 

§  For small files currently residing on OSTs 

§  To OSTs from MDT 
§  For files which have grown beyond the DoM component 
§  If space needs to be reclaimed on the MDT 

§  Between MDTs for load/space balancing 
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DoM Phase 2:  Performance Improvements 

Further performance improvements are a primary goal for DOM Phase 2 

§  DoM Phase 1 was targeted for functionality and stability 

§  Optimizations for READ/STAT: 
–  Read prefetch on file opening (read-on-open LU-10181) 

–  Current patch shows faster read() operations 

–  Glimpse-ahead: MDT returns size from client on stat() (LU-10181) 
–  Read data on stat() and readdir() (LU-10919) 



DoM Recommendations 

§  Review the MDT role carefully with DoM 
–  The MDT needs more space 

–  The MDT will experience higher RPC pressure 

§  SSD-based MDS is perfect for DoM 

–  Especially when OSTs uses HDD or RAID-5/6 

§  Consider a DoM+DNE setup in phase 2 
–  Scale metadata and I/O performance 

–  Can use larger capacity MDTs for DoM specifically 
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Beyond DoM:  Small File I/O Improvement Work 

Other potential areas beyond DoM for advancing small file I/O performance: 

§  Close in background (one fewer sync RPC) 

§  Save on sync ENQUEUE RPC if open/create RPC returns an exclusive lock 

§  Improved block grants handling with ZFS 

§  Multi-file read/write in a single RPC/RDMA 

§  Client initial create/open metadata handling 

§  Client metadata write-back cache 
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