
Small I/O Performance Improvements:
Pleasant & Unpleasant Surprises

LUG 2018

LUG 2018 Copyright 2018 Cray Inc.
1

Small I/O

● Distinct problem from small files (though commonly
found together)

● Very hard to offer good performance for small I/O
● 'Small' varies by who you ask: less than various

natural boundaries (page size, RPC size, etc)
● The smaller the I/O, the worse the performance
● Natural minimum I/O size is 1 page

LUG 2018 Copyright 2018 Cray Inc.
2

Unpleasant Surprises

● Crossing some size boundaries leads to nasty
surprises

● Unaligned write to existing files can be 95% slower
● I/O < 1 page in size gets worse & worse, even though

Linux does I/O 1 page at a time
● Poor user experience - “4096 bytes was fine, why is

4097 bytes terrible?”

LUG 2018 Copyright 2018 Cray Inc.
3

Why is it so bad?

● Client side per I/O overhead

● Much worse on Lustre than local fileystems

● Lots of work done regardless of I/O size

● Locking, cache management, etc, really adds up
● Network costs per I/O
● No obvious pain points – Death by a thousand cuts
● Disk hardware limits (small I/Os terrible for spinning

disk, not good for flash)

LUG 2018 Copyright 2018 Cray Inc.
4

What do we do for small I/O now?

● Re-use LDLM locks (most I/Os already have required lock)
● Sequential:

● Read ahead and write aggregation
● Avoid small I/Os over network/to disk
● Still have to process small I/Os on client

● Random:

● Tell people “Please don't do that.”

● Direct I/O (Lower locking overhead)

LUG 2018 Copyright 2018 Cray Inc.
5

Reads

● Readahead: Read more data than asked for

● Guarantees large I/O

● Could be better if more asynchronous (Tough,
though: See LU-8964)

● Per I/O overhead still bad for small reads

● Unaligned Overwrites

● ‘Fast Reads’ - Andrew Perepechko (Cray), Jinshan
Xiong (Uber)

LUG 2018 Copyright 2018 Cray Inc.
6

Surprise #1: Unaligned Overwrites

● Overwriting an existing file is the same as a new
write, until it’s suddenly not

● I/O happens a page at a time, must read in partial
pages

LAD 2017 Copyright 2017 Cray Inc.
7

Bytes
New File Overwrite Overwrite/

New File

4096 (4K) 600 MB/s 600 MB/s 100%

4097 590 MB/s 18 MB/s 3%

8192 (8K) 900 MB/s 900 MB/s 100%

8193 880 MB/s 35 MB/s 4%

Partial Page Readahead

● Shared file writing also counts as overwriting – can't
know pages are empty

● Read in one page at a time... Very slow.
● We have a solution for this: Use readahead!
● LU-9618: Partial page readahead (PPR, Patrick

Farrell/Jinshan Xiong)

LAD 2017 Copyright 2017 Cray Inc.
8

Write Performance with PPR

LAD 2017 Copyright 2017 Cray Inc.
9

Bytes
New File Overwrite Overwrite/

New File

4096 (4K) 600 MB/s 600 MB/s 100%

4097 590 MB/s 401 MB/s 70%

8192 (8K) 900 MB/s 900 MB/s 100%

8193 880 MB/s 598 MB/s 68%

Write Performance with PPR

LAD 2017 Copyright 2017 Cray Inc.
10

1 KiB 5 KiB
0

200

400

600

800

1000

1200

Write with Partial Page Readahead

New File
Overwrite
Overwrite + PPR
Shared File (4)
Shared File + PPR

Data

M
B

/s

Fast Reads

● Readahead brings in pages before they’re needed
● So, most userspace reads are satisfied from cache
● Old read code does a lot of work to check locking for

cached pages
● But LDLM evicts pages on conflicting writes, so we

can assume all cached pages are safe to read
● Really, really fast. Improves large & small I/O.
● Landed in 2.7-2.8 time fame

LUG 2018 Copyright 2018 Cray Inc.
11

Read Performance vs I/O Size

LUG 2018 Copyright 2018 Cray Inc.
12

8 64 1024 4096 1 MiB
0

500

1000

1500

2000

2500

3000

Fast Read Performance

Lustre - No Fast Read
Lustre - Fast Read

Data (Bytes)

M
B

/s

Read Performance vs I/O Size

LUG 2018 Copyright 2018 Cray Inc.
13

8 16 32 64
0

50

100

150

200

250

Fast Read Performance - Very Small

Lustre - No Fast Read
Lustre - Fast Read

Data (Bytes)

M
B

/s

What about writes?

● Writes are harder – Pages are usually created by
writing, so not already present

● More complicated than reads:
File size, ENOSPC (grant) handling, dirty page
writeout.

● If a dirty page is present, we know (most of...) this is
handled already. But so what? Dirty pages aren’t
present until we write to them.

LUG 2018 Copyright 2018 Cray Inc.
14

Surprise #2: Tiny Writes

● Except for really small (< 1 page) sequential writes
● If writing a few bytes at a time, dirty page will usually

be present
● Hence, tiny writes:

When a write is < 1 page in size and page is already
dirty, write directly to that page without full i/o

● New feature in 2.11

LUG 2018 Copyright 2018 Cray Inc.
15

Write Performance vs I/O Size

LUG 2018 Copyright 2018 Cray Inc.
16

Bytes
Lustre Lustre -

Linear
Lustre + Tiny
Writes

8 2.3 MB/s 1.2 MB/s 12 MB/s

64 19 MB/s 10 MB/s 90 MB/s

1024 245 MB/s 159 MB/s 370 MB/s

4096 635 MB/s 635 MB/s 635 MB/s

Write Performance vs I/O Size

LUG 2018 Copyright 2018 Cray Inc.
17

8 64 1024
0

50

100

150

200

250

300

350

400

Lustre
Lustre - Tiny Writes
Linear from 4K

Data (Bytes)

M
B

/s

Possible Future: Write Containers

● Tiny writes are very limited in applicability, can we do
better?

● Write containers (Jinshan Xiong)
● Prepare many per I/O items in advance/do them in a

batch (Ex.: Locking, grant, dirty page tracking)
● Design stage only, Jinshan is looking for volunteers
● Expect improvements of several times for smaller I/O
● Reduced contention for shared file I/O
● Only benefits sequential I/O, adds complexity

LUG 2018 Copyright 2018 Cray Inc.
18

Small Random I/O

● Can't do readahead
● Can't batch at all to disk
● We do batch writes at RPC layer, benefit is significant
● Flash on servers helps a lot here (Much better IOPs

than spinning disk.)

LAD 2017 Copyright 2017 Cray Inc.
19

It's all about Latency

● If you can't batch I/O, then do it as fast as possible
● No silver bullets
● Direct I/O is slightly better than buffered I/O (less

locking)
● Network request latency (smaller on HPC networks,

but still matters)

LAD 2017 Copyright 2017 Cray Inc.
20

LU-1757: Immediate Short I/O

● RPC required to set up RDMA for bulk transfer
● For small transfers, extra round trip is worse than

larger non-RDMA message
● Ergo, put small I/Os in to buffer in RPC
● About 30% faster on 4K reads on Cray Aries to flash

(Slower network would give a larger benefit)
● Too small to measure on writes (Most time spent in

journaling)

LUG 2018 Copyright 2018 Cray Inc.
21

Summary

● Small I/O is hard, especially for a parallel file system
● Lustre 2.11 contains some significant improvements
● Sequential: Reads are good, writes are OK

Tiny writes (LU-9409)
Partial page readahead (LU-9618)
Write Containers

● Random:
Immediate short I/O (LU-1757)

LAD 2017 Copyright 2017 Cray Inc.
22

What next?

● Sequential:
Tiny write append
Write Containers
Async readahead

● Random writes:
Journaling – Can we make this faster? Special “no
journal” mode for non-critical data?

LUG 2018 Copyright 2018 Cray Inc.
23

	Agenda
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

