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Small I/O

● Distinct problem from small files (though commonly 
found together)

● Very hard to offer good performance for small I/O
● 'Small' varies by who you ask: less than various 

natural boundaries (page size, RPC size, etc)
● The smaller the I/O, the worse the performance
● Natural minimum I/O size is 1 page
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Unpleasant Surprises

● Crossing some size boundaries leads to nasty 
surprises

● Unaligned write to existing files can be 95% slower
● I/O < 1 page in size gets worse & worse, even though 

Linux does I/O 1 page at a time
● Poor user experience - “4096 bytes was fine, why is 

4097 bytes terrible?”
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Why is it so bad?

● Client side per I/O overhead

● Much worse on Lustre than local fileystems

● Lots of work done regardless of I/O size

● Locking, cache management, etc, really adds up
● Network costs per I/O
● No obvious pain points – Death by a thousand cuts
● Disk hardware limits (small I/Os terrible for spinning 

disk, not good for flash)
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What do we do for small I/O now?

● Re-use LDLM locks (most I/Os already have required lock)
● Sequential: 

● Read ahead and write aggregation
● Avoid small I/Os over network/to disk
● Still have to process small I/Os on client

● Random:

● Tell people “Please don't do that.”

● Direct I/O (Lower locking overhead)
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Reads

● Readahead: Read more data than asked for

● Guarantees large I/O

● Could be better if more asynchronous (Tough, 
though: See LU-8964)

● Per I/O overhead still bad for small reads

● Unaligned Overwrites

● ‘Fast Reads’ - Andrew Perepechko (Cray), Jinshan 
Xiong (Uber)
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Surprise #1: Unaligned Overwrites

● Overwriting an existing file is the same as a new 
write, until it’s suddenly not

● I/O happens a page at a time, must read in partial 
pages
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Bytes
New File Overwrite Overwrite/

New File

4096 (4K) 600 MB/s 600 MB/s 100%

4097 590 MB/s 18 MB/s 3%

8192 (8K) 900 MB/s 900 MB/s 100%

8193 880 MB/s 35 MB/s 4%



Partial Page Readahead

● Shared file writing also counts as overwriting – can't 
know pages are empty

● Read in one page at a time...  Very slow.
● We have a solution for this: Use readahead!
● LU-9618: Partial page readahead (PPR, Patrick 

Farrell/Jinshan Xiong)

LAD 2017 Copyright 2017 Cray Inc. 
8



Write Performance with PPR
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Bytes
New File Overwrite Overwrite/

New File

4096 (4K) 600 MB/s 600 MB/s 100%

4097 590 MB/s 401 MB/s 70%

8192 (8K) 900 MB/s 900 MB/s 100%

8193 880 MB/s 598 MB/s 68%



Write Performance with PPR

LAD 2017 Copyright 2017 Cray Inc. 
10

1 KiB 5 KiB
0

200

400

600

800

1000

1200

Write with Partial Page Readahead

New File
Overwrite
Overwrite + PPR
Shared File (4)
Shared File + PPR

Data

M
B

/s



Fast Reads

● Readahead brings in pages before they’re needed
● So, most userspace reads are satisfied from cache
● Old read code does a lot of work to check locking for 

cached pages
● But LDLM evicts pages on conflicting writes, so we 

can assume all cached pages are safe to read
● Really, really fast.  Improves large & small I/O.
● Landed in 2.7-2.8 time fame
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Read Performance vs I/O Size
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Read Performance vs I/O Size
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What about writes?

● Writes are harder – Pages are usually created by 
writing, so not already present

● More complicated than reads:
File size, ENOSPC (grant) handling, dirty page 
writeout.

● If a dirty page is present, we know (most of...) this is 
handled already.  But so what? Dirty pages aren’t 
present until we write to them.
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Surprise #2: Tiny Writes

● Except for really small (< 1 page) sequential writes
● If writing a few bytes at a time, dirty page will usually 

be present
● Hence, tiny writes:

When a write is < 1 page in size and page is already 
dirty, write directly to that page without full i/o

● New feature in 2.11
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Write Performance vs I/O Size
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Bytes
Lustre Lustre - 

Linear
Lustre + Tiny 
Writes

8 2.3 MB/s 1.2 MB/s 12 MB/s

64 19 MB/s 10 MB/s 90 MB/s

1024 245 MB/s 159 MB/s 370 MB/s

4096 635 MB/s 635 MB/s 635 MB/s



Write Performance vs I/O Size
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Possible Future: Write Containers

● Tiny writes are very limited in applicability, can we do 
better?

● Write containers (Jinshan Xiong)
● Prepare many per I/O items in advance/do them in a 

batch (Ex.: Locking, grant, dirty page tracking)
● Design stage only, Jinshan is looking for volunteers
● Expect improvements of several times for smaller I/O
● Reduced contention for shared file I/O
● Only benefits sequential I/O, adds complexity
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Small Random I/O

● Can't do readahead
● Can't batch at all to disk
● We do batch writes at RPC layer, benefit is significant
● Flash on servers helps a lot here (Much better IOPs 

than spinning disk.)
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It's all about Latency

● If you can't batch I/O, then do it as fast as possible
● No silver bullets
● Direct I/O is slightly better than buffered I/O (less 

locking)
● Network request latency (smaller on HPC networks, 

but still matters)
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LU-1757: Immediate Short I/O

● RPC required to set up RDMA for bulk transfer
● For small transfers, extra round trip is worse than 

larger non-RDMA message
● Ergo, put small I/Os in to buffer in RPC
● About 30% faster on 4K reads on Cray Aries to flash 

(Slower network would give a larger benefit)
● Too small to measure on writes (Most time spent in 

journaling)
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Summary

● Small I/O is hard, especially for a parallel file system
● Lustre 2.11 contains some significant improvements
● Sequential: Reads are good, writes are OK

Tiny writes (LU-9409)
Partial page readahead (LU-9618)
Write Containers

● Random:
Immediate short I/O (LU-1757)
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What next?

● Sequential:
Tiny write append
Write Containers
Async readahead

● Random writes:
Journaling – Can we make this faster?  Special “no 
journal” mode for non-critical data?
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