
Roads	to	Zester

Ken	Rawlings						Shawn	Slavin						Tom	Crowe

High	Performance	File	Systems
Indiana	University

Introduction

● Data	Capacitor	II
○ IU	site-wide	Lustre	file system	
○ Lustre	2.1.6,	ldiskfs	MDT/OST,	5PB,	1.5	billion	inodes

● Reporting	needs	across	entire	file system
● Current	system	

○ Lester	+	Lustre	stat()
○ Struggles	since	breaking	1	billion	inodes

● Upcoming	file	system	at	IU
○ Lustre	2.8,	ZFS	MDT/OST
○ Larger	than	Data	Capacitor	II

Lester

● Lester,	the	Lustre	lister
●Written	by	David	Dillow	at	ORNL

○ https://github.com/ORNL-TechInt/lester
● Generates	Lustre	file	list	with	metadata	information	directly	from	ldiskfs
● Easily	parseable	text	file

○ path,	(a,c,m)-time,	mode, UID,	etc.
○ 1481481220|1481481220|1481481220|1486829|601|100666|358
4|175901125||||/ROOT/projects/foo/bar.txt

● No	equivalent	for	ZFS

Goals

● Equivalent	to	current	solution	for	ZFS	
○Without	Lustre	stat()	if	possible

● Focus
○ Regular	files	
○ Path,	UID,	GID,	Mode,	Timestamps,	&	Size

● Two	Stages
○ Gather	Lustre	metadata	from	underlying	ZFS	layer
○ Assemble	MDT/OST	information	and	compute	file	sizes

● Remain	mindful	of	scaling	needs

Priorities

● Doesn’t	need	to	be	perfect
○ Understood	error	bounds

● Faster	than	Lustre	stat()
○ Over	a	billion	files	measured	in	days	not	weeks

● Not	parasitic	on	filesystem
● No	custom	code	run	as	root	on	OSS/MDS

Lustre																														ZFS	POSIX	Layer

ZFS
Attribute	Processor

Data	Management	Unit

ZFS	&	Lustre

ZDB

● Standard	ZFS	utility	
○ Dumps	information	about	ZFS	pools	and	datasets

● 'zdb	-dddd	<dataset>'	outputs	dataset	objects	information
○ Path,	Timestamps,	Size,	GID,	UID,	mode,	etc.
○ Includes	Extended	Attributes

●MDT:	trusted.lov
● OST:	trusted.fid

● Somewhat	challenging	to	parse

ZDB	MDT	Dataset

● Provides	Lustre	metadata	information
● Need	object	information	for	OST	lookup	to	compute	files	sizes
● Requires	decoding	of	trusted.lov	

Object		lvl			iblk			dblk	 dsize		lsize			%full		type
199					 1					16K			128K		1K		 128K			0.00		ZFS	plain	file
path					/ROOT/testfile
uid					121
gid					12
atime			Fri	Oct		9	19:56:47	2015
<...>
trusted.lov	=	\320\013\321\013\001\000\000\...

Decoding	trusted.lov	

● Tom	Crowe's	trusted.lov	Extended	Attribute	decoding	script
○ Provides	(ostidx,	objid)	object	pairs

● Needed	EA	translation	from	ZDB	format
● zfsobj2fid	utility

○Written	by	Christopher	Morrone	at	LLNL
○ trusted.fid	decoding	from	ZDB	dump
○ Available	on	Lustre	ZFS	from	2.8	forward
○ Includes	general	ZDB	EA	translation	logic

ZDB	OST	Dataset

● Parent	object	FatZAP	has	key-value	pair	for	objid	lookup:
Object		lvl			iblk					dblk		dsize				lsize			%full				type
129 2					16K				16K		16.5K				32K		100.00		ZFS	directory
<...>
Fat	ZAP	stats:
265 =	421 (type:	Regular	File)	

● Target	ZFS	object	has	trusted.fid	EA	and	size
Object		lvl			iblk				dblk			dsize					lsize			 %full							type
421 3					16K			128K		269M			269M				100.00		ZFS	plain	file
<...>
size	220182
trusted.fid	=	\000\004\000\000\002\000\000\000

MDT 0
zfsobj	[path:	/ROOT/foo.txt,	...,	trusted.lov:	\320…]

[[ostidx:0,	objid:265]	[ostidx:1,objid:	640]]

OST 0																																												 OST 1
fatzap	[...,	from_id:265,	to_id:	421]													fatzap	[...,	from_id:640,	to_id:	475]
zfsobj	[id:	421,	...,	size:220182]																				zfsobj	[id:	475,	...,	size:	232621]

File	Size	Example

Implementation

● Named	Zester	as	homage	to	Lester
●Written	in	Python 2.7

○ Evaluating	future	Python	3.x	move
● Started	with in-memory	representation	

○Worked	well	for	experimentation	and	initial scaling
○ Problematic	past	1	million	files

●Moved	to	SQLite	as	primary	data	representation
○ Python	DB-API	2.0
○ Portable	SQL

Zester	Overview

Parse	MDT	&	OST	ZDB

Generate	ZDB	SQL	DB

Compute	File	Sizes

Generate	Metadata	SQL	DB	

ZDB	Parsing

● Each	MDT &	OST	ZDB	dataset	dump	parsed	into	separate	SQLite	DB	file
● Some	parsing	challenges,	robust	so	far
● Generated	DB	schema

○ zfsobj [id,	path,	uid,	gid,	size,	...,	trusted.fid,	trusted.lov]
○ fatzap	[id,	from_id,	to_id,	file_type]

● Output
○ mdt_<idx>.zdb	->	mdt_<idx>.db
○ ost_<idx>.zdb	->	ost_<idx>.db

Metadata	DB	Generation

● Loop	over	all	MDT	ZFS	objects	with	trusted.lov	
○ Decode	trusted.lov	into	set	of	(ostidx,	objid)	object	pairs
○ For	each	pair

■ Translate	objid	to	target	OST	ZFS	object	using	FatZAP
■ Query	target	OST	ZFS	object	for	size

○ Sum	object	sizes
●Metadata	DB	

○ Represents	file	from	Lustre	viewpoint
○ metadata	[path,	size,	mode,	gid,	atime,	ctime,	...]

● Output
○ mdt_<idx>.db	ost_<idx>.db	...	->	metadata.db

Testing

● Create	test	files	on	Lustre	filesystem
○ Various	modes,	sizes,	stripes,	path	depths,	etc.

● Lustre	stat()	all	test	files
○ Generate canonical metadata	DB	to	test	against

● Compare	Zester	metadata	DB	and	canonical	metadata	DB
● Currently	path,	mode,	UID,	GID,	size,	atime,	mtime,	and	ctime

Current	Status

●Work	in	progress
● Promising	Results

● No	metadata	errors	into	millions	of	files	(including	size)
○ Allow	variance	of	2	seconds	on	timestamps		

■ Available	timestamp	precision	low
● Lustre	2.8	focus
● Scale-up	currently	limited	by	testing	infrastructure

○ Expect	limit	of	testing	tens	of	millions in	reasonable	time
●Will	test	&	scale	further	against	new	file	system	once	available

Scalability

●Mindful	of billion-scale	file	need,	no	known	showstoppers
● Currently	processing	thousands	of	objects	per	second

○ Consistent	with billion	objects	measured	in	days	not	weeks
● Parsing	parallelizable	across	OSTs/MDTs
● Profiling	

○ ZDB	parsing	CPU	limited	by	strptime()
○ Low	process	memory	usage

●Move	to	DB	server	straightforward	when/if	necessary
● Python	remains	promising

○ C	extensions	where	needed

Zester	ZDB	DBs

● Queryable	DB	of	ZFS	layer underlying MDTs	&	OSTs
○ ZFS	Lustre	"under	the	floorboards"

● Already	proven	valuable	
○ Investigating	alternate	verification approaches

● Useful	for	more	than	just	reporting
○ Filesystem	forensics,	etc.

● Stored	information	focused	on	project	needs
○Will	add	more	moving	forward

Future	Work

● Continue	scale-up	and	testing
● Test	with	additional	Lustre	versions
● Add	other	file	types
● Formalized	unit	&	integration	testing
● Source	code	investigation
● ZDB	
● Lustre	ZFS	OSD

● Adapt	as	Lustre	changes
● Layout Enhancement

Thank	You!

● Your	time	and	attention	is	appreciated
○ Feedback	and	suggestions:	hpfs-admin@iu.edu

● Lustre	community
● High	Performance	File	Systems	@	IU

○ Tom	Crowe,	Chris	Hanna,	Nathan	Heald,	Nathan	Lavender,	Ken	
Rawlings,	Steve	Simms,	Shawn	Slavin

● Source	Code
○ https://github.com/iu-hpfs/zester
○ GPL2	licensed,	collaborators	welcome!

● Questions?

