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• Founded in 1477 and reopened after a 150-year break in 1946 by the 

French forces 

• 35,000 students from about 130 nations 

• 4,150 academics, including 540 professors, teach and conduct 

research in JGU's more than 150 departments, institutes, and clinics  

• Extraordinary research achievements in the fields of particle and 

hadron physics, materials sciences, and translational medicine 

Johannes Gutenberg University Mainz 
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Mogon HPC Cluster der JGU Mainz  



Mogon II 



• Why do we need Quality of Service for HPC? 

• Architectural Approaches 

• Keep it simple: Integration of QoS-Manager and 

extensions for Slurm and Lustre 

• Scenarios and Evaluation 

 

Agenda 



Motivation: I/O Burstiness 

Philip H. Carns, Kevin Harms, William E. Allcock, Charles Bacon, Samuel Lang, Robert Latham, Robert B. Ross: 

Understanding and improving computational science storage access through continuous 

characterization. MSST 2011: 1-14 

Throughput at the block device level of Intrepid’s main storage devices 

from January 23rd to March 26th  including GPFS and PVFS activity  



• I/O resources are typically not part of the 

scheduling process 

– Users might acquire bigger capacity share of the storage 

system, but do not receive more bandwidth 

– Individual compute jobs are able to (accidentally) perform 

denial of service attacks by flooding the parallel file 

system with many small requests or metadata operations 

– Concurrently running checkpoint operations overload 

parallel file system bandwidth and therefore prolong 

application runtimes 

 

Why Quality of Service? 



• QoS Planning for storage resources 

– Guarantee x GB/s read throughput 

– Guarantee y GB/s write throughput 

– For specific files? 

 

• Architecture includes 

– Batch System 

– Client and/or server component in 

Lustre enforcing QoS 

QoS Planning in Lustre 
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• Lustre’s lfs command allows to determine the OST’s 

storing a file 

– Each OST provides a certain bandwidth 

– OST of an OSS can be seen as individual “resources” 

just like nodes in a cluster 

 

Initial Approach: Reserve Bandwidth per File 



Initial Control Flow 

MDS 

QoS Planner Slurm 

OSS 

1. Submit Job  

/foo/compute 

12 cores 

12 GB memory 

/foo/bar 

10 GB/s 

2. Request 

3. get_osts(/foo/bar) 4. [ost1, ost2] 

6. Set NRS policies 

5. Ack 



• Lustre’s lfs command allows to determine the OST’s 

storing a file 

– Each OST provides a certain bandwidth 

– OST of an OSS can be seen as individual “resources” 

just like nodes in a cluster 

 

• Approach leads to two (major) problems 

– Jobs including many small files prohibit scalability of 

this approach 

– Lustre (now) allows growing file stripes 

 

Initial Approach: Reserve Bandwidth per File 



Current Approach: Do not care about files ... 
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• Bandwidth is defined as a global and as a local resource  

• Slurm plug-in controls: 

– Globally available bandwidth - treated as license (one 

license/MB) 

– Local bandwidth - treated as generic resource 

• Job gets rejected if one resource is not available 

• Example: 

– srun -N1 -gres=qoslustre:100M -L 

lustreqos:100 sleep 5 

 

Slurm Integration 



Token Bucket Filter (TBF) 

Classifier 

Incoming Requests 

Dequeue request at class deadline 
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• TBF is implemented inside Lustre‘s Network Request 

Scheduler (NRS) 

• 1 Token = 1 RPC ≈ 1 Mbyte (for 1 Mbyte chunks) 

• Class-based TBF can classify by User ID, Job ID, … 

• Batch System / Administrator assigns token rates (per OSS) 

 

• Throughput for multiple flows enables fair bandwidth 

distribution 

• Proportional Sharing Spare Bandwidth (PSSB) enable 

utilization of full bandwidth of OSSs  

Token Bucket Filter (TBF) 



Throughput for multiple flows 

• 16 clients are divided into two sets 

– Slow clients are assigned a rate of 10 IOPS  

– 10,000 IOPS are assigned to fast clients 

• Clients with same rate receive same bandwidth 

 



PSSB Evaluation 

• 16 clients working in parallel on job1, where each client 

wrote 1 GB data at an initial rate setting of 150 

• 16 clients were running job2, each writing 2 GB data at an 

initial rate setting of 100 



We have integrated our QoS-Planner on our productive 

system Mogon II 

• QoS server runs on two OSSs responsible for scratch file 

system 

– nrs_policies=“tbf  jobid” 

– jobid_var=procname_uid 

• OSS use Lustre’s TBF version 2.8 

• QoS client is installed on compute nodes 

– jobid_var=procname_uid 

 

Putting it all together ... 



A client application for reserving bandwidth has been 

developed for Slurm 

 

# qosp reserve -throughput 100 -duration 100 \ 
  -filenames /path/to/folder -id=slurm_job_id  

 

• Command reserves a throughput of 100 RPCs for 100 

seconds 

• OSTs are identified via filenames respectively paths 

• Available shares can be identified via id 

A priori Reservation 



Slurm-plugin uses qosp command for reserving bandwidth 

Throughput is taken from global and local resource 

 

Further integrations are possible: 

• Coupling users or groups with QoS manager 

– Groups that gave additional money for storage get 

more shares 

– Malicious users/groups can be throttled down 

• Credit bandwidth of reservations that terminate earlier 

 

A priori Reservation 



Many programs require high I/O bandwidth only for a short 

time period 

• Loading input data during initialization 

• Checkpointing 

• Storing final results 

We provide a C++ API for spontaneous I/O accesses 

• Reserve bandwidth for a certain time span 

• Test if reservation is available 

• Remove reservation after I/O is done 

 

Spontaneous Reservation 



Most important API functions: 
// none-blocking reservation 
string addReservationAsync(int tp, int sec, string fs); 

// blocking reservation 
string addReservationSync(int tp, int sec, string fs); 

// delete a specific reseravtion 
bool removeReservation(string id); 

// test the status of a reservation  
// (UNDEFINED, SCHEDULED, ACTIVE) 
// required for asynchronous reservation 
int testReservation(string id); 

 

Spontaneous Reservation 



QoS scheduler currently uses backfilling, thus a reservation 

start time may change during waiting period 

Asynchronous functions supports this behavior 

 

// none-blocking reservation 
string addReservationAsync(int tp, int sec, string fs); 

// test the status of a reservation  
int testReservation(string id); 

 

Programs like Espresso++ or tools like SCR can use these 

features to request bandwidth for asynchronous checkpoints 

Spontaneous Reservation 



After every simulation step the checkpointing function 

DumpXYZQoS::dump() is called 
void DumpXYZQoS::dump() { 
  if(!qos_waiting){ 
    qosId = qosp.addReservationAsync(1000, 10, filename()); 
    qos_waiting = true; 
    conf.gather() 
  } 
  if(qosp.testReservation(qosId) != ACTIVE) return; 
  qos_waiting = false; 
  ... // write checkpoint 
} 

 

Espresso++ 



 

Thank you for your attention. 


