

Providing QoS-mechanisms for Lustre

through centralized control applying the

TBF-NRS

Lustre User Group 2017
L. Zeng, J. Kaiser, A. Brinkmann, T. Süß – JGU

L. Xi, Q. Yingjin, S. Ihara – DDN

Mainz, Germany

• Capital of the state of

Rhineland-Palatinate

• Directly located at the Rhine

• Founded in the late first

century BC

• Member of the Great Wine

Capitals Global Network

(GWC)

Mainz, Germany

• Capital of the state of

Rhineland-Palatinate

• Directly located at the Rhine

• Founded in the late first

century BC

• Member of the Great Wine

Capitals Global Network

(GWC)

• Gutenberg Bible has been

printed in Mainz

• Founded in 1477 and reopened after a 150-year break in 1946 by the

French forces

• 35,000 students from about 130 nations

• 4,150 academics, including 540 professors, teach and conduct

research in JGU's more than 150 departments, institutes, and clinics

• Extraordinary research achievements in the fields of particle and

hadron physics, materials sciences, and translational medicine

Johannes Gutenberg University Mainz

Zentrum für Datenverarbeitung

Mogon HPC Cluster der JGU Mainz

Mogon II

• Why do we need Quality of Service for HPC?

• Architectural Approaches

• Keep it simple: Integration of QoS-Manager and

extensions for Slurm and Lustre

• Scenarios and Evaluation

Agenda

Motivation: I/O Burstiness

Philip H. Carns, Kevin Harms, William E. Allcock, Charles Bacon, Samuel Lang, Robert Latham, Robert B. Ross:

Understanding and improving computational science storage access through continuous

characterization. MSST 2011: 1-14

Throughput at the block device level of Intrepid’s main storage devices

from January 23rd to March 26th including GPFS and PVFS activity

• I/O resources are typically not part of the

scheduling process

– Users might acquire bigger capacity share of the storage

system, but do not receive more bandwidth

– Individual compute jobs are able to (accidentally) perform

denial of service attacks by flooding the parallel file

system with many small requests or metadata operations

– Concurrently running checkpoint operations overload

parallel file system bandwidth and therefore prolong

application runtimes

Why Quality of Service?

• QoS Planning for storage resources

– Guarantee x GB/s read throughput

– Guarantee y GB/s write throughput

– For specific files?

• Architecture includes

– Batch System

– Client and/or server component in

Lustre enforcing QoS

QoS Planning in Lustre

Architecture including QoS-Planner

OSS

OSS

OST

OST

OST

OST

MDT

MDS

MGT

MGS Lustre Clients

Architecture including QoS-Planner

OSS

OSS

OST

OST

OST

OST

MDT

MDS

MGT

MGS

QoS

Planner

Slurm

Lustre Clients

Architecture including QoS-Planner

OSS

OSS

OST

OST

OST

OST

MDT

MDS

MGT

MGS

QoS

Planner

Slurm

Lustre Clients

• Lustre’s lfs command allows to determine the OST’s

storing a file

– Each OST provides a certain bandwidth

– OST of an OSS can be seen as individual “resources”

just like nodes in a cluster

Initial Approach: Reserve Bandwidth per File

Initial Control Flow

MDS

QoS Planner Slurm

OSS

1. Submit Job

/foo/compute

12 cores

12 GB memory

/foo/bar

10 GB/s

2. Request

3. get_osts(/foo/bar) 4. [ost1, ost2]

6. Set NRS policies

5. Ack

• Lustre’s lfs command allows to determine the OST’s

storing a file

– Each OST provides a certain bandwidth

– OST of an OSS can be seen as individual “resources”

just like nodes in a cluster

• Approach leads to two (major) problems

– Jobs including many small files prohibit scalability of

this approach

– Lustre (now) allows growing file stripes

Initial Approach: Reserve Bandwidth per File

Current Approach: Do not care about files ...

Planner

Scheduler Slurm

QoS Planner

Frontend

Cluster State

Job States

Schedule State

DB

Server

Monitor

lc
tl
 a

n
d
 l
fs

OSSs

MDS

• Bandwidth is defined as a global and as a local resource

• Slurm plug-in controls:

– Globally available bandwidth - treated as license (one

license/MB)

– Local bandwidth - treated as generic resource

• Job gets rejected if one resource is not available

• Example:

– srun -N1 -gres=qoslustre:100M -L

lustreqos:100 sleep 5

Slurm Integration

Token Bucket Filter (TBF)

Classifier

Incoming Requests

Dequeue request at class deadline

C1 C2 C3 C4

FIFO Queues

Token

buckets
R R R R

• TBF is implemented inside Lustre‘s Network Request

Scheduler (NRS)

• 1 Token = 1 RPC ≈ 1 Mbyte (for 1 Mbyte chunks)

• Class-based TBF can classify by User ID, Job ID, …

• Batch System / Administrator assigns token rates (per OSS)

• Throughput for multiple flows enables fair bandwidth

distribution

• Proportional Sharing Spare Bandwidth (PSSB) enable

utilization of full bandwidth of OSSs

Token Bucket Filter (TBF)

Throughput for multiple flows

• 16 clients are divided into two sets

– Slow clients are assigned a rate of 10 IOPS

– 10,000 IOPS are assigned to fast clients

• Clients with same rate receive same bandwidth

PSSB Evaluation

• 16 clients working in parallel on job1, where each client

wrote 1 GB data at an initial rate setting of 150

• 16 clients were running job2, each writing 2 GB data at an

initial rate setting of 100

We have integrated our QoS-Planner on our productive

system Mogon II

• QoS server runs on two OSSs responsible for scratch file

system

– nrs_policies=“tbf jobid”

– jobid_var=procname_uid

• OSS use Lustre’s TBF version 2.8

• QoS client is installed on compute nodes

– jobid_var=procname_uid

Putting it all together ...

A client application for reserving bandwidth has been

developed for Slurm

qosp reserve -throughput 100 -duration 100 \
 -filenames /path/to/folder -id=slurm_job_id

• Command reserves a throughput of 100 RPCs for 100

seconds

• OSTs are identified via filenames respectively paths

• Available shares can be identified via id

A priori Reservation

Slurm-plugin uses qosp command for reserving bandwidth

Throughput is taken from global and local resource

Further integrations are possible:

• Coupling users or groups with QoS manager

– Groups that gave additional money for storage get

more shares

– Malicious users/groups can be throttled down

• Credit bandwidth of reservations that terminate earlier

A priori Reservation

Many programs require high I/O bandwidth only for a short

time period

• Loading input data during initialization

• Checkpointing

• Storing final results

We provide a C++ API for spontaneous I/O accesses

• Reserve bandwidth for a certain time span

• Test if reservation is available

• Remove reservation after I/O is done

Spontaneous Reservation

Most important API functions:
// none-blocking reservation
string addReservationAsync(int tp, int sec, string fs);

// blocking reservation
string addReservationSync(int tp, int sec, string fs);

// delete a specific reseravtion
bool removeReservation(string id);

// test the status of a reservation
// (UNDEFINED, SCHEDULED, ACTIVE)
// required for asynchronous reservation
int testReservation(string id);

Spontaneous Reservation

QoS scheduler currently uses backfilling, thus a reservation

start time may change during waiting period

Asynchronous functions supports this behavior

// none-blocking reservation
string addReservationAsync(int tp, int sec, string fs);

// test the status of a reservation
int testReservation(string id);

Programs like Espresso++ or tools like SCR can use these

features to request bandwidth for asynchronous checkpoints

Spontaneous Reservation

After every simulation step the checkpointing function

DumpXYZQoS::dump() is called
void DumpXYZQoS::dump() {
 if(!qos_waiting){
 qosId = qosp.addReservationAsync(1000, 10, filename());
 qos_waiting = true;
 conf.gather()
 }
 if(qosp.testReservation(qosId) != ACTIVE) return;
 qos_waiting = false;
 ... // write checkpoint
}

Espresso++

Thank you for your attention.

