
Collective I/O for Exascale I/O Intensive
Applications

Sai B. Narasimhamurthy
Lead Researcher

Goal of the work
Exascale10: A Quick Background
DEEP-ER Project: A Short background
Exascale I/O Intensive applications: Key Requirements
The small I/O problem
Existing Collective I/O techniques & drawbacks
Solution framework
Current Status and Next Steps

Agenda

2

Developing a ubiquitous software middleware based solution to
address key performance optimization issues for I/O intensive
Extreme scale out applications

Small I/O is seen is a major problem for I/O even at Petascale

Trying to address the small I/O problem through the newly
architected E10 middleware

The solution should be applicable to a wide variety of
applications and back-end object stores and file systems, etc

Solution part of the DEEP-ER EU project and is targeted to be
an E10 component

Goal of the work

Exascale10 a quick background
Develop a ubiquitous middleware that helps I/O scaling

Works for a wide variety of applications
Agnostic of any backend storage/file systems

Based on requirements captured in 2012/13 from application
experts worldwide

Participation from more than 40 organisations worldwide
(Big Labs, Academics and Industry experts)

E10 now part-funded in DEEP-ER and Mont-Blanc2 EU
projects

Exascale10 a quick background..
File Systems cannot scale “as is” (examples)

File system interfaces too low level for apps to efficient make
use of them (for providing hints, optimizations, layouts, etc)

Overlapping stripe writes and small I/Os from clients cannot
scale , performance wise
Intelligent Middleware could detect such scenarios

Performance overheads due to locks and synchronisation
cannot scale

Specialised read ahead techniques (For Ex: Speculative read
ahead) not possible

Various formats such as HDF5/NetCDF have their own
semantics which is repeated in file systems

Exascale10 a quick background..
Each layer has its own semantics:

Re-implementation of the same optimization strategies
Layer specific approaches drastically degrade performance, prevent
scalability

HPC Application
(eg: Climate Simulation Codes)

High-Level I/O Library/Data Formats
(eg. HDF5, NetCDF4, Grib2)

Classic I/O Middleware
(eg. MPI-IO)

I/O Forwarding
(eg. ZOID)

Parallel File System
(eg. Lustre, GPFS)

Includes communications infrastructure such as
LNET connecting clients/servers

Local File System
(eg. EXT4)

(a) Mapping application data abstractions(Eg. Matrices,
Vectors, etc) to storage abstractions(objects, files)

(b) Portability of data across platforms

(a) Co-ordinates file accesses between multiple
processes

(b) Enables parallel I/O from processes to files

(a) Perform I/O on behalf of compute nodes
(b) Optimizations (aggregation, caching, rescheduling,

etc)

(a) Organises files and objects in many nodes
(b) Parallelize data access

Maps a file/object in bytes and blocks on storage
hardware

EIOW Middleware
“realm”

Substrate

Exascale10 a quick background..

DEEP-ER EU project, a short background
Extension of the “DEEP” FP7 programme funded EU project

addressing Exascale Compute
Separately addressing highly scalable code parts in Exascale

applications(envisioned in DEEP)

Highly scalable, efficient and easy to use Parallel I/O for Exascale
Exploration of NVRAM technologies at various levels in the I/O

stack

Low-over head user-level checkpoint/restart and task recovery for
Exascale apps

Co-design approach with applications

DEEP-ER project, a short background

DEEP-ER project, a short background

Summary of key I/O requirements from the DEEP-ER
(Exascale targeted) Applications

I/O intensive modes

Need to address large shared files

I/O issues need to be addressed for both checkpoint restart as
well as simulation based file I/O

Optimizations to address small I/O on large shared files
absolutely essential

Collective I/O at Exascale needs to be a key optimization!

Exascale I/O Intensive apps: Key Requirements

The Small I/O Problem

Congested I/O Servers
Reduced Disk I/O Bandwidth

Existing Collective I/O (2 Phase I/O)

24.02.2014

0

0 1 2 3

I/O Servers

1 2

Phase 1
Data Shuffling

Phase 2
Data I/O

Aggregated
View

Processes

Aggregator Process 0 Aggregator Process 2

Better performance than small contiguous I/O

2-Phase I/O Limitations

Aggr

P0 P1 P2 P3

Synchronisation issues

Bottleneck process

Aggregator Bottlenecked

Aggregator 0

Aggregator 1

Aggregator 2

Aggregated
File Region

Stripe
boundaries

Partitioning 1

Stripe collision

Partitioning 2

Partitioning 3

Data layout issues
(lack of physical layout
awareness among
aggregators)

Stripe contention

I/O server contention

Collective I/O - Limitations

Aggregator operations consume memory resources

Neither the memory bandwidth nor the memory capacity will
scale by the same factor as the total concurrency(the scale of the
number of nodes)![Vetter2008]

HPC system
requirements[ross2013]

ExCol - Solution Framework

Collective I/O enhancements for Exascale
Primarily addressing the small I/O problem as discussed earlier
..but at massive I/O scale-outs

Implementation will be built around existing collective I/O implementations
(in ROMIO) as a base

No reinventing the wheel
Preserving MPI-IO interoperability semantics for applications

APIs will be part of Exascale10 Middleware

ExCol- Solution framework

Avoiding data exchanges between aggregators and processes

Conserving memory bandwidth

Avoiding very large aggregator buffers

Physical layout awareness

Leveraging the concept of advanced file views for aggregators

Optimizations to deal with NVRAM layers between compute and storage
(as we have in the DEEP-ER architecture)

ExCol Methods - Example

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

P0 P1 P2 P3

0 4 8 1
2 1 5 9 1

3 2 6 1
0

1
4 3 7 1

1
1
5

Logical
Layout /
File View

Data I/O
Phase

IOS
0

IOS
1

IOS
2

IOS
3

stripe

Data Shuffle
Phase

Memory
Layout

P0 P1 P2 P3

0 4 8 1
2 1 5 9 1

3 2 6 1
0

1
4 3 7 1

1
1
5

IOS
0

IOS
1

IOS
2

IOS
3

Example of Physical layout awareness (and usage of listIO type frameworks)

Classic Extended Two Phase I/O Partitioning Physical layout aware partitioning, stripe
contiguous (no data shuffle)

0 4 8 1
2 1 5 9 1

3 2 6 1
0

1
4 3 7 1

1
1
5

0 4 8 1
2 1 5 9 1

3 2 6 1
0

1
4 3 7 1

1
1
5

Physical
Layout

Memory

File

Contiguous in Memory

Non-Contiguous in File

18

Current Status and Next Steps
Phase 1 (October’13 – Feb’14)

Understand application I/O requirements for Exascale
Background work understanding existing collective I/O and their
drawbacks

Phase 2(March’14 – September’14)
Develop solution framework
Preliminary architecture

Phase 3 (October’14 – September’15)
Implementation

Phase 4 (October’15 -)
Detailed Evaluations for various applications/file system back-

ends

Acknowledgements for the work

Giuseppe Congiu (ExCol Architecture and Development)

Malcolm Muggeridge (VP, Xyratex ETG) and the Xyratex Team

Key references

•[ross2013]Memory conscious collective I/O for Extreme Scale HPC systems , Yin Lu et al

•[Vetter2008]HPC Interconnection networks: The Key to Exascale Computing, J.S. Vetter, et al

•[Yu2008] Parcoll:Partioned Collective I/O on the Cray XT, Weikuan Yu, et al

•[Zhang2008]Making Resonance a Common Case:A High Performance Implementation of

Collective I/O on Parallel File Systems, Xuechen Zhang, et al

•[Liao2008]Dynamically adapting file domain partitioning methods for collective I/O based on

underlying parallel file system locking protocols, We-Keng Liao, et al

•[Chen2011]LACIO: A New Collective I/O Strategy for Parallel I/O Systems, Yong Chen, et al

•[He2011]Pattern Aware File Re-organisation in MPI-IO , He, et al

•[ROMIO] http://www.mcs.anl.gov/research/projects/romio/

http://www.mcs.anl.gov/research/projects/romio/

Thank You
Sai_Narasimhamurthy@xyratex.com

	Collective I/O for Exascale I/O Intensive Applications
	Agenda
	Goal of the work �
	Exascale10 a quick background �
	Exascale10 a quick background.. �
	Exascale10 a quick background.. �
	Exascale10 a quick background.. �
	DEEP-ER EU project, a short background�
	DEEP-ER project, a short background�
	DEEP-ER project, a short background�
	Exascale I/O Intensive apps: Key Requirements �
	The Small I/O Problem�
	Existing Collective I/O (2 Phase I/O)
	2-Phase I/O Limitations
	Collective I/O - Limitations�
	ExCol - Solution Framework�
	ExCol- Solution framework�
	ExCol Methods - Example
	Current Status and Next Steps�
	Acknowledgements for the work ��
	Key references��
	Thank You

