

Beijing - October 15 Tokyo - October 17

Sponsored by:

I/O Dispatcher (IOD)

-Transactional Burst-Buffer above DAOS/Lustre

Xuezhao Liu EMC FastData Group

Agenda

- EMC aBBa interposed into HPC storage stack
- IOD enabled transactional BurstBuffer above DAOS/Lustre
- Summary

Beijing - October 15 Tokyo - October 17

Shared and Bursty I/O of HPC APP

- Shared or partially shared file usage becomes the predominant method
- Burstiness of I/O
 - For 98% of the time, the I/O system was utilized at less than 33% of peak
 I/O bandwidth. (ANL, BG/P, 2011)
 - High peak bandwidth mainly for checkpointing
- EMC aBBa fully fits the gap between APP and PFS

Beijing - October 15 Tokyo - October 17

A New Storage Tier -- Burst Buffer

- Existing disk-based storage stack will not scale
 - Disk-only too expensive for bandwidth
 - Flash-only too expensive for capacity

- EMC built prototype burst buffer systems at SC11/SC12/SC13
- 4x faster checkpoint
- Jitter-free co-processed analysis
- 30% total time to completion reduction

30% faster workflow with burst buffers

 Application offload to ABBA: Visualization, analytics coprocessing .

PLFS' Motivation: N-1 Concurrent Writing doesn't Scale

 Many scientific applications create checkpoints using small, strided, concurrent writes to a shared file (N-1 checkpoint)

GPFS

- Small strides, small writes
 - May be un-aligned
 - Read-modify-write
 - Lock contention
 - Disk seeking

Beijing - October 15 Tokyo - October 17

Sponsored by:

Agenda

- EMC aBBa interposed into HPC storage stack
- IOD enabled transactional BurstBuffer above DAOS/Lustre
 - General introduction
 - Innovative semantics (transactional object storage, semantics awareness)
 - Interactions with DAOS
- Summary

Beijing - October 15 Tokyo - October 17

Fast Forward I/O Architecture

Sponsored by:

Beijing - October 15 Tokyo - October 17

I/O Dispatcher

I/O rate/latency/bandwidth matchin
Burst buffer / prefetch cache

- Burst buffer / prefetch cache
- Absorb peak application load
- Sustain global storage performance
- Layout optimization

Upper layers provide expected usage

Higher-level resilience models

Exploit redundancy across storage objects

Scheduler integration

Pre-staging / Post flushing

Sponsored by:

Characteristics of Exascale Application I/O

- Application I/O will be object-oriented, not file-based
 - Instantiate and persist rich distributed data structures and application metadata
- Application I/O will be asynchronous
 - Non-blocking operations initiate I/O
 - Event queues signal completion
- Applications responsible for managing I/O conflicts
 - I/O system provides, but does not impose, appropriate and scalable mechanisms to resolve conflicting operations
 - Avoids unnecessary serialization.
- Applications use transactional I/O model
 - All operations in a given transaction will succeed or fail
 - Failures in components and subsystems <u>will</u> occur

CopenSIS.

Sponsored by:

Beijing - October 15 Tokyo - October 17

Abstraction Translation

HDF5 Abstraction	IOD Abstraction	DAOS Abstraction
H5File	Container	Container
H5Group	KV object	Set of DAOS objects
H5DataType		
H5DataSpaces	KV pair in KV object	Data in a DAOS object
H5Attribute		
H5Properties		
H5Reference		
H5Link		
H5Dataset	Array object	Set of DAOS objects
H5CommittedDatatype	Blob object	Set of DAOS objects

- Transparent writing/reading between CN and BB (ION)
- Explicit, on-demand data movement between BB and DAOS
 - BB to BB
 - Multi-format replica is for blobs and KVs.
 - Semantic resharding is the same idea but for arrays.
 - BB to DAOS persist
 - DAOS to BB pre-stage with user preferred layout
 - Purge and punch

IOD Array-Object Layout and Re-Organization

IOD Transaction Properties

- Atomic writes either all writes in a transaction are applied or none of them are.
- **Commutative writes** concurrent writes are effectively applied in TID order, not time order.
- Consistent reads all reads in a transaction may "see" the same version data even in the presence of concurrent writers.
- **Multiple objects** any number of IOD objects within one container may be written in the same transaction.
- Multiple threads any number of threads and/or processes may participate in the same transaction.

Beijing - October 15 Tokyo - October 17

IOD Blob Object Storage on DAOS

• Virtual view:

DAOS Storage Target

DAOS Shard

Agenda

- EMC aBBa interposed into HPC storage stack
- IOD enabled transactional BurstBuffer above DAOS/Lustre
- Summary

Summary

- EMC aBBa (Active Burst Buffer Appliance)
 - Matches the bursty I/O needs of the SC
 - Match the available slower disk system to the checkpoint draining

Sponsored by:

- Allow to reverse the trend of disk for BW to disk for capacity
- Application offloading: visualization, analytics co-processing
- I/O Dispatcher extended transactional burst-buffer
 - A buffering/optimizing layer above DAOS/Lustre
 - Richer/closer mechanisms provided to application
 - Transactional object storage with 3 major object types (KV, blob, array)
 - Semantics awareness and data re-organization
 - Fully asynchronous APIs
 - Natural well support for random writing (PLFS)
 - Developing in progress, demonstrated internally ... will be open-source (LGPL)

Beijing - October 15 Tokyo - October 17

Sponsored by:

Q&A

Thanks

For IOD related information please contact: John.Bent@EMC.com Xuezhao.Liu@EMC.com

Beijing - October 15 Tokyo - October 17

Sponsored by:

Sponsored by:

Beijing - October 15 Tokyo - October 17

IOD Sub-modules Overview

Beijing - October 15 Tokyo - October 17

Parallel Log-structured FS (PLFS)

- Middleware SW management for ABBA
 - PLFS manages data movement on ABBA
 - PLFS organizes data for efficient bidirectional read/write CN ← → ABBA
 ← → Lustre
 - PLFS guarantees just in time data movement between ABBA ← → Lustre (drains data between checkpoints; pre-fetches data when needed)
 - PLFS + ABBA guarantee fast checkpoint, removes bursty disk access behavior
 - PLFS + ABBA co-processing offload visualization from CN's and guarantee jitter free compute

CopenSIS.

Sponsored by:

Beijing - October 15 Tokyo - October 17

Other Benefits with PLFS not Shown

- Better data organization
 - Faster reads
 - Applications no longer need to tune IO
- Directory sharding
 - More file metadata op/s
 - N-N create phase much faster
 - (Directory metadata ops like mkdir are slower)
 - Federate multiple filesystems into one namespace
- About to show seamless integration of flash
- Many other possibilities for future research
 - e.g. data services like dedup, data integrity, compression, etc

Sponsored by:

Beijing - October 15 Tokyo - October 17

EMC Lustre activities: VNX HPC Series

- High IOPS/ Throughput
- Small Form Factor
- High Density
- Best Price/ Performance
- Enterprise Reliability, Availability and World class Service

Sponsored by:

Beijing - October 15 Tokyo - October 17

EMC Lustre activities: VNX HPC Series

- Base Configuration is a Single Rack offering
 - 720 TB Capacity, 8 GB/s Performance
 - Pre-racked and configured VNX5100 and VNX7500
 - Servers for Management and File System
- Single Point of Management via Management Console from Terascala
- Application Ready Pre-configured and tuned Lustre Parallel File System
- Infini-band (QDR) interface to computational node

Sponsored by:

Beijing - October 15 Tokyo - October 17

IOD's Methodologies

- Objects instead of files
 - Blob objects for traditional sequences of bytes
 - Key-value stores for smaller get/put operations (MDHIM)
 - Array objects for semantic storage of multi-dimensional structure data
- Containers instead of directories
 - Snapshots for efficient COW across sets of objects
 - Transactions for atomic operations across sets of objects
- List I/O all the way through the stack
 - Reduce trips across network
- Everything fully asynchronous with distributed transactions
 - Reads, writes, commits, unlink, etc across sets of objects
- Explicit Burst Buffer management exposed to APP
 - Migrate, purge, pre-stage, multi-format replicas, semantics resharding
- End-to-end data integrity
 - Checksums store with data, APP can detect silent data corruption
- Co-processing analysis on in-transit data
 - Query and reorganize the placement of data structures before analysis shipping