

Background

- ORNL largest cray system upgraded from XT5 to XK7
- Went from using SeaStar to Gemini
- Currently using modified Lustre 1.8.6 clients

Performance evaluation

• Theoretical promised raw performance

- 3 GB/s small messages
- 6 to 7 GB/s bulk messages
- Gemini 1.8 LND driver real numbers
 - 1.0 GB/s small messages
 - 1.6 GB/s bulk messages

Causes

- Check summing is expensive
 - On 1.6 GB/s
 - Off 3.8 GB/s
- Original driver was not multiple threaded.
 - Newer driver version have added threads to handle parallel check summing for service nodes
 - Threads in newer driver added for service nodes only

Possible Solutions

- Different check sum algorithm
- Avoid check summing in certain cases
- Are more threads the solution
- Have these problems been solved before ?

Lustre 2.4

- Lustre had the same challenges
 - New crypto api used for check summing.
 - SMP scaling

Lustre Crypto api

- More choices of check sum algorithms.
- Hardware optimized choices.
- Ptlrpc does bulk checksumming
 - No need to check sum on routers
 - Double check summing is bad

Crypto challenges

- Cray default kernel lacks most crypto targets
- Lustre assumes crypto supported targets are there
- Both DVS and Lustre use LNET
 - Impacts bulk check sum optimization

Gnilnd SMP scaling

 Rework LND driver according to mapping between layers.

- X LNET interfaces : Y devices : Z CPT
- Per CPT allocations to limit cache migration
- CPU affinity to threads

SMP API gives greater control

You can control which cores belong to which CPT

- Don't need to use all cores
- You can map LNET interfaces to specific CPT
 - Use this to limit compute node noise

Gemini LND platform targets

- Cray platforms vary greatly
 - XE6 AMD Magny-Cours
 - XK7 AMD Bulldozers
 - XC30 Intel Xeon E5-2600 Series
- Compute nodes and Service nodes for the same family of hardware need different configurations
- XC30 uses Aries interconnect. Others use Gemini
 - Both interconnects are supported with same software stack

Hardware influences configuration

- Processor properties
 - NUMA and cache shared between cores
 - AMD shares the FPU between 2 cores
- Compute nodes want as many cores for jobs as possible
 - Use $\frac{1}{2}$ cores for jobs. Other $\frac{1}{2}$ for LND
- Gemini hardware attached to only one of the two sockets via the Hyper fransport.
 - Test if CPT on second socket adds any value
- Hardware check summing

Test configuration

- Are more CPT better.
 - Service node 1 socket with 6 cores
- Were do threads cost us versus benefits
 - Computes have 24 cores total
 - Don't want to use all the cores
 - Optimize core usage based on NUMA
- When do we saturate the interconnect.
- Which crypto check sum algorithm is best

Progress so far

- Base line numbers finish
- SMP scaling code done and stable
 - More optimizations possible
- Checksumming code work in progress
 - Issues with lack of kernel crypto algo support
 - Have code but needs to be debug. Oops :-(
- •TODO
 - SMP performance evaluation
 - Delay due to Lustre 2.4 testing which is highest priority

Thank you!

