
1

Finding the Needle
Improving Management of Large Lustre File 

Systems

Presented by

David Dillow



2

The Haystack

● Key metric for common management tasks is 
number of files rather than size
● Generating candidates for sweep
● Listing files on an OST
● Naming inodes from error messages

● File systems keep growing
● ORNL currently at 118M/62M/13M files
● Down from peaks of 250+M/109M/86M files



3

Current Tools

● High-level, likely remote, access
● find
● lfs find

● Low-level, direct access to LUNs
● debugfs
● e2scan
● ne2scan



4

Execution environment

● Storage
● Engenio 7900 (XBB2)
● 80 1 TB SATA drives in RAID10

● Production
● 4x 4Gb FC from host
● 16 cores Xeon (2.4 GHz) w/ 64 GB memory

● Test bed
● SRP over DDR Infiniband
● 4 core Xeon (2.6 GHz) w/ 6 GB memory



5

Sweep takes longer and longer

● Up to nearly 21 hours for generating candidate 
list @ 150M files
● Occasionally 8 hours

● 6+ hours for 90M
● Occasionally 18 hours
● Sometimes 4 hours

● Past usage affects future performance
● As does current usage!



6

Finding files on an OST

● lfs find takes over 5 days at ~200M files
● Live system

● fsfind takes 3h 20m to scan 150M files
● Not including time to generate the 30GB list
● Running over Lustre



7

Naming an inode

● ... Found existing inode

.../10979900/3759376635 state 7 in 
lock: setting data to

.../10979916/3759376661

● debugfs takes just under 2 hours to name the 
inodes involved
● This is from an idle system
● Use -c to avoid reading bitmaps
● Give it all inodes to name in one go



8

Why aren't the current tools faster?

● Client side
● Round trip latency for operations
● Difficulty in pipelining to hide latency

● libext2fs I/O behavior
● Poor readahead behavior
● Low queue depth
● Small request sizes
● Introduction of random seeks



9

Anatomy of (n)e2scan

● Phase 1 – find interesting inodes
● Linear scan of inode table
● Iterate block list on directories

● Phase 2 – name inodes
● Scan directory locks and build a path tree
● Simple case – linear scan of directory content
● Normal case – highly random inode lookup



10

Feeding the Beast

● Modern IO systems thrive on
● Larger requests
● More requests in flight

● Kernel posix_fadvise() QoI issues
● Want to reuse improved IO patterns in other 

tools
● Don't want to re-write libext2fs



11

AIO IO Manager

● Uses native Linux AIO interface (libaio.a)
● Reuses io_channel_readahead()

● Uses O_DIRECT to improve control of requests

● Maintains internal cache
● Tunable cache size (default 20 MB)
● Tunable requests in flight (default 8 requests)



12

Initial Impact

● Inode Scan (150M inodes, no block iteration)
● Unix IO manager – 375 seconds
● AIO IO manager – 327 seconds
● Both w/ block iteration – 2445 seconds

● Directory Scan (80 GB data, name only)
● Unix IO manager – 3436 seconds
● AIO IO manager – 508 seconds



13

Addressing seeks

● Often don't need results immediately
● Already scheduling readahead requests

● Easy to insert lazy requests into readahead stream



14

Basic Async API

● io_channel_async_read(channel, block, 
callback, priv1, priv2)

● io_channel_finish_async(channel, 
max_reqs)

● io_channel_async_count(channel)



15

High-level Async API

● ext2fs_block_iterate_async(fs, ino, 
inode, iter_callback, end_callback, 
priv)

● ext2fs_read_inode_async(fs, ino, 
async_state, callback, priv)



16

Improving the Async Behavior

● Original implementation rather naive
● Problems surfaced during path resolution phase

● Read each inode block 8 times
● Requested single block in each request
● At least we kept the queue depth high...



17

Improving the Async Behavior

● Added duplicate request handling
● Only send one request for a block

● Added request merging
● Grow small requests into larger ones (~15% 

walltime)
● Allow for a tunable gap between requests (~5% 

walltime)

● Improved cache and async bookkeeping



18

Impact of Async API

● Inode Scan (150M files w/ block iteration)
● Unix IO manager – 902 seconds (sync)
● AIO IO manager – 366 seconds

● Directory Scan (80GB w/ inode lookup)
● Unix IO manager – 51198 seconds (sync)

– (n)e2scan – 14709 seconds (sync)
● AIO IO manager – 3052 seconds



19

Improving the pathname resolution

● IO is now pretty efficient, but seeing stalls
● We hit 100% CPU for several seconds at a time
● Consequently, we stop tending to our IO requests



20

Improving the pathname resolution

● Replaced glibc rbtree with kernel's 
implementation
● Worth ~15% CPU, 16.5% walltime

● Improved pathname generation
● Avoid multiple walks of the path tree
● Worth 30% CPU on micro-benchmark, ~5% on 

walltime



21

Current state

● Generates fslist compatible output
● Full metadata dump
● 160M files in 1 hour on testbed (vs 5 hrs)
● 119M files in 35 to 50 minutes on production 

hardware (vs 3.5 to 8 hrs)

● Naming inodes
● Picked three random inodes in a directory
● Named in 15 minutes (vs 2 hrs)



22

Future work

● Clean up and release!
● Track down remaining CPU hogs
● Add listing of files on particular OSTs
● Add write support to AIO IO manager
● Proof-of-concept test for fsck



23

Questions?

● Contact info:

David Dillow

865-241-6602

dillowda@ornl.gov


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

