

© 2011 Whamcloud, Inc.

Parallel Directory Operations
of Lustre

•  Liang Zhen
Whamcloud, Inc.
liang@whamcloud.com

SC11
Nov 15th, 2011

© 2011 Whamcloud, Inc.

•  For many HPC applications, performance of
single directory operations is critical

•  Threads vs State machines
–  Threads based programming is much much easier than state

machines based programming
–  Well designed multiple threads system has good performance on

SMP system

•  However
–  multiple threads system can kill performance if it’s not well designed

•  Could even be a lot worse than single thread system
–  Overhead of thread context switch is very expensive
–  All Exclusive locks can’t scale well for many threads

•  Lustre has a lot of threads
–  Huge mount of thread context switches

Why need PDO (Parallel directory operations)

3

© 2011 Whamcloud, Inc.

•  A directory is protected by a single LDLM lock
–  It works just like an expensive rw_semaphore for directory

operations
–  By default we have max to 512 service threads to handle metadata

requests, but some customers require more than 512 threads
–  Assume all threads are waiting on a single lock

•  Using VFS interface to access backend
filesystem (ldiskfs)
–  VFS APIs always take per-inode lock i_mutex to protect tree

topology
–  On Lustre 1.8.* or earlier versions, directory tree topology is _not_

really protected by i_mutex because operations have already been
serialized by LDLM lock

How Lustre protects directory on 1.8.x

4

© 2011 Whamcloud, Inc.

•  PDO ldlm lock
–  For example

•  create/unlink will take CW lock on directory, PW lock on name entry
–  Parallelized operations for file creation

•  Object creation on backend filesystem
•  Permission check
•  Name entry Lookup
•  OI (Object index) operations
•  Creation of OST objects

–  Performance increased

•  No VFS on MDS stack
–  VFS is replaced by MDD/OSD

•  Directly access backend filesystem
–  Name entry operations are still serialized by rw_semaphore in OSD

•  Name entry insert
•  Name entry remove
•  Name entry lookup (READ)
•  They are expensive

How Lustre protects directory on 2.x

5

© 2011 Whamcloud, Inc.

Ext2/3/4/Ldiskfs directory

6

0

1

100

2

200

3

0

4

20

13

40

9

60

11

100

6

120

7

150

5

200

8

240

10

260

12

E1 E2 …
E10 E12 …

E31 E32 … E71 E72 …

E21 E32 …
E41 E42 …

E91 E92 …
E51 E52 …

E61 E62 …
E81 E82 …

Block 0

Block 1 Block 2 Block 3

Block 4

Block
13 Block 9

Block
11

Block 6

Block 7

Block 5

Block 8

Block
10 Block

12

DX-block

DE-block

•  DX-block: directory
indices block

•  DE-block: directory
entries block

© 2011 Whamcloud, Inc.

•  probe htree-path
•  Insert name-entry to DE-block
•  Remove name-entry from DE-block
•  Iterate over all DE-blocks
•  Split DE-block
•  Split DX-block
•  Grow tree depth

–  Support N-level htree

•  How to parallelize these operations?
–  No loss in performance of FFP
–  w/o rewriting htree directory of ldiskfs

Operations on htree based directory

7

© 2011 Whamcloud, Inc.

•  Child-lock
–  may be used to protect any node in htree

•  Node == DX/DE-block

•  Tree-lock
–  protect the tree topology
–  Modes: EX, PW, PR, CW, CR

•  CR and CW for most common cases

•  Locking order
–  Must take tree-lock

 before taking child-lock

•  scalable lock
–  Blocking/non-blocking
–  skiplist

Htree-lock

8

DX-Block
0

DX-Block
1

DX-Block
2

DX-Block
3

DX-Block
4

DX-Block
5

DE-Block
7

DE-Block
6

DE-Block
8

DE-Block
9

Thread-1: tree-lock (CR)

Thread-2: tree-lock (CW)

Thread-1: child-lock (PR)

Thread-2: child-lock (PW)

Graph-2 : htree and htree-lock

Thread-1: child-lock (PR)

Level-0

Level-1

Level-2

Level-3

© 2011 Whamcloud, Inc.

•  preliminary idea
–  Child-lock only protects DE-block

•  Search/insert/remove entry from DE-block
–  Tree-lock protect all other operations

•  Probe htree-path
•  split DE-block
•  split DX-block
•  grow tree depth

–  However
•  split DE-block for each ~100 creation

–  Block size is 4K, each entry has name string + extra, so bytes of
each entry ~= 40byets, and each DE-block can fit in ~100 entries

•  We have hundreds or thousands service threads
–  Always some threads want to exclusively lock the tree because

they need to split DE-block
•  Performance results are not cool enough

Protecting htree dir by htree-lock (1/2)

9

© 2011 Whamcloud, Inc.

•  Improvement
–  Child-lock protect DE-blocks and the last level DX-blocks

•  Lock DE-block for search/add/remove name entry
•  Lock the last-level DX-block on DE-block splitting

–  Tree-lock
•  Tree-lock wouldn’t protect tree topology change to last level nodes

–  Split DE-block (leaf node) is protected by child-lock
•  Take exclusive tree-lock for splitting DX-block (intermediate node)

–  Each DX-block can contain 512 pointers to DE-block, each DE-
block can container ~100 entries

–  512 * 100 = 51,200, chance to lock the whole tree is 1/51,200,
which is small enough

•  Take exclusive tree-lock for growing htree
•  Other operations just take shared lock (CW/CR)

Protecting htree dir by htree-lock (2/2)

10

© 2011 Whamcloud, Inc.

Graphs

11

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 2 4 8 16 32 64 128 256 512 1024
IO

P
s/

se
c

number of threads

mds_survey unlink

master (HD journal)
master (ramdisk journal)
PDO (HD journal)
PDO (ramdisk journal)
PDO + multi-OIs (HD journal)
PDO + multi-OIs (ramdisk journal)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 2 4 8 16 32 64 128 256 512 1024

IO
P

s/
se

c

number of threads

mds_survey create

master (HD journal)
master (ramdisk journal)
PDO (HD journal)
PDO (ramdisk journal)
PDO + multi-OIs (HD journal)
PDO + multi-OIs (ramdisk journal)

© 2011 Whamcloud, Inc.

•  Liang Zhen
Whamcloud, Inc.
liang@whamcloud.com

Thank You

