

Technical Overview of the OLCF's Next Generation Parallel File System

Galen Shipman, Doug Reitz, James Simmons, David Dillow, Doug Fuller, Youngjae Kim, Jason Hill, and Sarp Oral

Presented by: Sarp Oral, PhD

Transitioning I/O to next gen computing

- From Jaguar to Titan
 - − Number of cores: 224K \rightarrow 300K
 - − Memory: 300 TB \rightarrow 600 TB
 - − Peak Performance: 2.2 PFlops \rightarrow 10-20 Pflops
 - − Proprietary Interconnect: SeaStar2+ → Gemini
 - Peak egress I/O (over IB): (192 x 1.5 GB/s) → (384-420 x 2.8-3 GB/s)

<u>More capable platform for science</u> → more demanding I/O requirements to deliver the science

Starting from Spider ...

- Spider \rightarrow Next gen parallel file system
- Designing, deploying, and maintaining Spider was a trail blazer
 - No ready available solution at the time of design or deployment
 - Novel architecture
- Center-wide shared file system approach
 - Eliminating islands of data
 - Decoupled file system from compute and analysis platforms
 - Rolling or partial upgrades possible with no down time
 - Single-point of failure

Spider availability

- Scheduled Availability (SA)
 - % of time a designated level of resource is available to users, excluding scheduled downtime for maintenance and upgrades

System	Scheduled Availability (SA)			
	2010 Target	2010 Actual	2011 Target	2011 Actual
Widow1	95.0%	99.7%	95.0%	99.26%
Widow2	NIP	NIP	95.0%	99.93%
Widow3	NIP	NIP	95.0%	99.95%

• Widow1

- 100% availability in 8 of the 12 months of 2011 with SA of 99.26% over the entire year

• Availability and reliability surpassed our expectations

Next gen file system will also be center-wide shared architecture

4 $\square LCF \bullet \bullet \bullet \bullet$

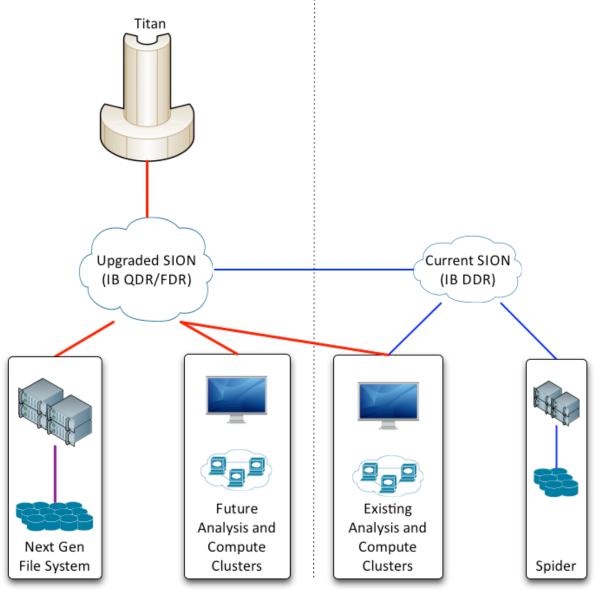
New Architecture

- Target numbers for next gen parallel file system
 - 1 TB/s file system-level well-formed I/O performance
 - 240 GB/s file system-level random I/O performance
 - Capacity will be based on the selected storage media
 - Expected to be 9-20 PB
 - Availability: >95%
 - Expected availability will be similar of Spider's

Architecture

- Expected storage and network architecture
 - Will be built using scalable building blocks (SSU)
 - Host-side connectivity: IB FDR or QDR
 - SION tech refresh and upgrade
 - Disk-side connectivity: FC, IB, SAS, ...
 - Agnostic of the host-side

Another advantage of decoupled parallel file system architectures


- Next gen file system and Spider will be online concurrently
 - Spider will be connected to the upgraded SION through existing SION
 - Spider EOL expected to be 2014

Architecture

7

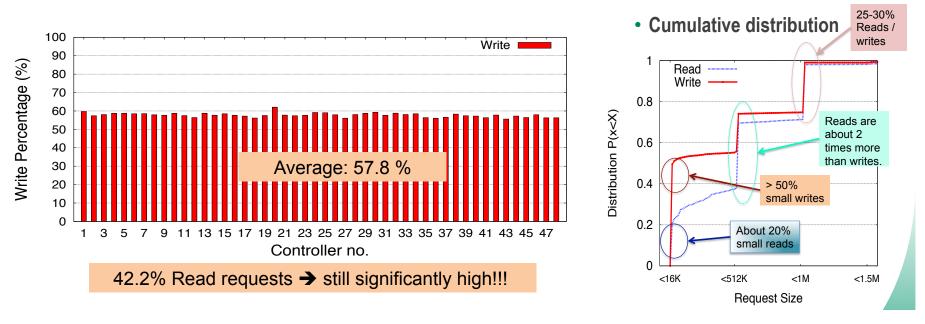
New or future components and systems

Existing components and systems

Lustre for next gen parallel file system

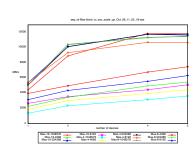
- Lustre v. 2.2 or later will be used
 - Improved metadata performance
 - pDirOps (2.2)
 - Async glimpse lock (statahead issue)
 - DNE and SMP scaling
 - Scalability improvements (2.2)
 - Imperative recovery
 - Wide-striping
 - Portals RPC thread pool
 - NRS

Working with Whamcloud to harden and stabilize 2.2

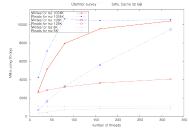

Scheduled down-times can be used to harden 2.2 and test future Lustre features, bug fixes, and improvements

I/O Workload Characterization

- "Workload characterization of a leadership class storage cluster"
 - <u>http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5668066</u>



<u>Next gen file system</u> can not only be optimized for checkpointing should support mixed workloads


Procurement

- Acquisition process
 - Open procurement
 - Timetable: TBD (2012-2013 timeframe)
- Procurement benchmarks
 - Publicly available
 - http://www.olcf.ornl.gov/wp-content/uploads/2010/03/olcf3-benchmark-suite.tar.gz
 - Block I/O

- Libaio based, fair-lio as I/O engine
- Single host single LUN
- Single host all LUNs
- SSU all LUNs healthy
- SSU all LUNs degraded

- File system I/O
 - Obdfilter-survey based
 - Tested against Lustre v1.8

