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The Obvious Challenges 

§  Bulk	
  data	
  movement.	
  GoJa	
  reduce	
  synchronizaGon	
  in	
  the	
  I/O	
  path,	
  help	
  users	
  
perform	
  in	
  situ	
  analysis	
  to	
  reduce	
  I/O	
  overall,	
  and	
  use	
  in-­‐system	
  storage	
  
resources	
  to	
  best	
  drive	
  I/O	
  to	
  external	
  storage.	
  

§  Reliability.	
  Must	
  hide	
  failures	
  when	
  possible	
  and	
  degrade	
  gracefully	
  when	
  not.	
  
See	
  Internet	
  services	
  storage	
  soluGons	
  for	
  ideas.	
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Aggregate	
  I/O	
  throughput	
  on	
  BG/P	
  storage	
  servers	
  at	
  one	
  minute	
  intervals.	
  Lots	
  of	
  
bandwidth	
  is	
  leT	
  on	
  the	
  floor.	
  

P.	
  Carns	
  et	
  al.	
  Understanding	
  and	
  improving	
  computaGonal	
  science	
  storage	
  access	
  through	
  conGnuous	
  characterizaGon.	
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  on	
  Mass	
  Storage	
  Systems	
  and	
  Technologies	
  (MSST	
  2011),	
  May	
  2011.	
  	
  



Challenge: Inertia (or Data Models and Semantics) 

§  The	
  connecGon	
  (interface)	
  between	
  
applicaGons	
  and	
  storage	
  should	
  reflect	
  the	
  
models	
  used	
  in	
  science	
  codes	
  
–  (e.g.,	
  structured	
  and	
  unstructured	
  meshes,	
  

parGcles,	
  varying	
  levels	
  of	
  fidelity)	
  

§  POSIX	
  sucks	
  as	
  an	
  I/O	
  model	
  for	
  
computaGonal	
  science	
  
–  Neither	
  convenient	
  nor	
  easy	
  to	
  reach	
  high	
  

performance	
  for	
  real	
  workloads	
  
–  Serves	
  as	
  a	
  conGnual	
  distracGon	
  from	
  more	
  

producGve	
  development	
  

§  Need	
  to	
  present	
  an	
  alternaGve	
  storage	
  model	
  
–  Object	
  storage	
  (i.e.,	
  OSD)	
  is	
  a	
  nice	
  start	
  
–  Need	
  more	
  understanding	
  of	
  name	
  spaces	
  
–  Must	
  consider	
  analysis	
  use	
  cases	
  as	
  well	
  

§  TemptaGon	
  to	
  “support	
  POSIX”	
  will	
  remain	
  
and	
  taint	
  most	
  efforts.	
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Figure 2: Cross-sections of the spectral element mesh used for LES of 217-pin configuration:

(a) z = 0, (b) close-up at z = 3D. The dark lines indicate the boundaries of the spectral

elements, each of which contains N3 cells (N2 in the plane).

ranging from 230 to 630 gpm. For a single wire-wrap pitch, the geometry comprises 438

subchannels of length H/Dh = 73.4, for a total channel length of approximately 32000

Dh (roughly 20000 times the length of a standard turbulent channel flow simulation). To

further reduce computational costs, we restrict our attention to a single pitch of the wire

wrap and use periodic boundary conditions at the axial planes z = 0 and z = H. Flow

is established through an axial forcing (corresponding to mean pressure gradient) that is

varied in time using a feedback loop to achieve a fixed flow rate. The simulations are

carried out in nondimensional units with D as the characteristic length scale and D/U as

the time scale, where U is the mean velocity. The viscosity is set to ν = 1/ReD, with

ReD := DU/ν = 15000.

2.2 Discretization

The spatial discretization in Nek5000 is based on the spectral element method (SEM), in

which the solution, geometry, and data are expressed as Nth-order tensor-product poly-

nomials on hexahedral (curvilinear brick) elements. The polynomial basis functions are

Lagrange interpolants based on Gauss-Lobatto-Legendre quadrature points. The discrete

equations are derived from standard weighted residual (Galerkin) procedures, resulting in

a large system of nonlinear ordinary differential equations for the basis coefficients. The

current simulations are based on the the consistent velocity-pressure formulation in which

the pressure is represented as piecewise discontinuous polynomials of order N − 2 [?]. For

a collection of E elements in three dimensions, the number of gridpoints is approximately

n = EN3 for velocity and np = E(N − 1)3 for pressure, with N =5–15 being typical.

Further details of the SEM are given in [?, ?, ?].

Nek5000 advances the Navier-Stokes equations using semi-implicit timestepping. The

advective terms for momentum and thermal transport are treated explicitly, giving rise to
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Cross-­‐secGon	
  of	
  spectral	
  
element	
  mesh	
  used	
  in	
  large	
  
eddy	
  simulaGon	
  of	
  217-­‐pin	
  
reactor	
  subassembly.	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Image	
  from	
  P.	
  Fischer	
  (ANL).	
  



Challenge: Understanding 

§  Applica,ons.	
  Need	
  more	
  informaGon	
  on	
  current	
  and	
  future	
  applicaGon	
  I/O	
  
needs.	
  InformaGon	
  should	
  guide	
  design.	
  See	
  Darshan,	
  IPM-­‐IO,	
  ScalaTrace.	
  

§  Storage	
  Designs.	
  Exascale	
  storage	
  will	
  be	
  complex	
  mix	
  of	
  heterogeneous	
  
components.	
  Need	
  tools	
  to	
  help	
  us	
  explore	
  the	
  HW/SW	
  design	
  space	
  quickly	
  
and	
  efficiently	
  before	
  we	
  start	
  building,	
  while	
  we	
  conGnue	
  development.	
  See	
  
CODES,	
  HECIOS,	
  IMPIOUS,	
  PFSsim.	
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(a) write
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(b) read

Fig. 4: Comparison of simulated and observed IOR performance. Figure 4a illus-
trates results using IOR write workloads. Figure 4b illustrates results using IOR
read workloads.

store its data into a unique file that was inaccessible by other processes. The
file-per-process tests required the file system to perform additional metadata
operations, such as file creations, that are not required in the shared file tests.
The stripe-aligned tests used 4 MiB (4×220 bytes) accesses for a total of 64 MiB
per process. Stripe-aligned accesses caused each processes file requests to align
with the stripe of the file. This allowed 4 MiB accesses to be made directly to
the DDN LUN. The stripe-unaligned tests used 4 MB (4× 106 bytes) accesses
for a total of 64 MB per process. The stripe-unaligned accesses spanned multiple
file stripes and required most requests to processed by more than one file server.

The results of our IOR write validation experiments closely follows the re-
sults observed during our previous study. The results for these experiments are
illustrated in Figure 4a. The overall file system performance trend for write re-
quests is correctly captured by our simulator. Like the results reported in our
previous study, the simulator performance for write requests levels off at 64K
processes and remains constant at larger scales. Our simulated results capture
the performance variations from 2K to 128K client processes at roughly a 10%
error rate. Specifically, the model is able to capture the extra overhead for both
the stripe-unaligned experiments and file-per-process experiments. In the prior
study, we observed network contention within the storage system network that
caused file system performance degradation. We believe that we can capture
this behavior within our models by artificially limiting the message rate per re-
source destination. We believe this adjustment may improve the error rate of
the stripe-unaligned tests.

Figure 4b illustrates the IOR benchmark throughput for observed and simu-
lated read operations. Like the write experiments, the stripe-aligned and stripe-
unaligned accesses were investigated using 4 MiB and 4 MB PVFS stripe sizes.
Our results show that the stripe-aligned read throughput closely follows the ob-
served performance of Intrepid’s PVFS storage systems. Our model is able to
capture most of the performance variations for stripe-aligned read and file-per-
process read experiments. It yields more error in stripe-unaligned read tests. The

Write	

 N.	
  Liu	
  et	
  al.	
  Modeling	
  a	
  Leadership-­‐scale	
  Storage	
  System.	
  In	
  Proceedings	
  of	
  
the	
  9th	
  InternaGonal	
  Conference	
  on	
  Parallel	
  Processing	
  and	
  Applied	
  
MathemaGcs	
  (PPAM	
  2011).	
  September	
  2011	
  (paper	
  to	
  appear).	
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Equation 1 computes the perceived throughput of a network operation (T ) based
on the size of the data payload (DP ), the maximum link throughput (TL),
and the size of non-payload data associated with the transfer (DO). The data
throughput and access latency of the DDN storage devices are modeled as a
simple, constant function. Parameters for both models were obtained by using
micro-benchmarks that measured the observed throughput between the various
devices in the ALCF computing environment.

Multiple software layers are involved in Intrepid’s I/O path. Our software
models approximate the interfaces, protocols, and interactions of the software
components deployed in the ALCF computing environment. The software models
and interfaces sit on top of the hardware LPs and trigger hardware events for
I/O operations. At the application layer, our models provide a POSIX-like I/O
interface. Our application-level models translate application I/O requests into
CIOD client requests using a series of CN and ION events. These CN and ION
events reflect the interaction between the CIOD clients and servers. The CIOD
server receives the CIOD client requests and generates a series of ION and storage
server hardware requests that approximate the interaction of the CIOD server
and the PVFS file system. The PVFS file system then generates a series of
storage server and DDN events that approximate the interactions between the
storage server and the DDN storage devices. The number and types of events
generated by our models depend upon the complexity of the I/O system software
protocol for a specific I/O layer.

Several parameters are associated with the software models. The most im-
portant parameters are the CIOD transfer size and the PVFS stripe size. CIOD
limits the amount of data that can be transferred in a single I/O operation (4
MiB default value on Intrepid). CIOD requires multiple operations to transfer
requests larger than 4 MiB. The PVFS stripe size dictates the block size dis-
tributed to the PVFS file servers (4 MiB default value on Intrepid) and file
alignment. Requests that are not aligned on a 4 MiB boundary or exceed a 4
MiB capacity require access to multiple PVFS servers per I/O operation.
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Fig. 3: CODES file write request model for Intrepid.

The CODES storage system simulator implements the necessary protocols to
provide application-level file open, close, read, and write using the ALCF hard-
ware and software models. Figure 3 depicts the PDES model used for application

Current	
  CODES	
  model	
  includes	
  simulaGon	
  of	
  
I/O	
  protocols	
  on	
  all	
  major	
  BG/P	
  components.	
  
First	
  goal	
  is	
  to	
  validate	
  with	
  BG/P	
  data.	
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