
Overcoming Roadblocks to
Exascale Storage

Rob	
 Ross,	
 Pete	
 Beckman,	
 Phil	
 Carns,	
 Jason	
 Cope,	
 Kevin	
 Harms,	
 	

Kamil	
 Iskra,	
 Dries	
 Kimpe,	
 Rob	
 Latham,	
 Rusty	
 Lusk,	
 Tom	
 Peterka,	

Katherine	
 Riley,	
 Seung	
 Woo	
 Son,	
 Rajeev	
 Thakur,	
 Venkat	
 Vishwanath,	

and	
 JusGn	
 Wozniak	

Mathema,cs	
 and	
 Computer	
 Science	
 Division	

Argonne	
 Na,onal	
 Laboratory	

rross@mcs.anl.gov	

The Obvious Challenges

§  Bulk	
 data	
 movement.	
 GoJa	
 reduce	
 synchronizaGon	
 in	
 the	
 I/O	
 path,	
 help	
 users	

perform	
 in	
 situ	
 analysis	
 to	
 reduce	
 I/O	
 overall,	
 and	
 use	
 in-­‐system	
 storage	

resources	
 to	
 best	
 drive	
 I/O	
 to	
 external	
 storage.	

§  Reliability.	
 Must	
 hide	
 failures	
 when	
 possible	
 and	
 degrade	
 gracefully	
 when	
 not.	

See	
 Internet	
 services	
 storage	
 soluGons	
 for	
 ideas.	
 	

2	

 0

 5

 10

 15

 20

 25

 30

 35

 40

01/23

01/24

01/25

01/26

01/27

01/28

01/29

01/30

01/31

02/01

02/02

02/03

02/04

02/05

02/06

02/07

02/08

02/09

02/10

02/11

02/12

02/13

02/14

02/15

02/16

02/17

02/18

02/19

02/20

02/21

02/22

02/23

02/24

02/25

02/26

02/27

02/28

03/01

03/02

03/03

03/04

03/05

03/06

03/07

03/08

03/09

03/10

03/11

03/12

03/13

03/14

03/15

03/16

03/17

03/18

03/19

03/20

03/21

03/22

03/23

03/24

03/25

03/26

G
B

y
te

s
/s

scheduled maintenance

missing data

scheduled maintenance

network maintenance

storage maintenance

EarthScience project usage change

scheduled maintenance

control system maintenance
 and scheduled maintenance

Read
Write

Aggregate	
 I/O	
 throughput	
 on	
 BG/P	
 storage	
 servers	
 at	
 one	
 minute	
 intervals.	
 Lots	
 of	

bandwidth	
 is	
 leT	
 on	
 the	
 floor.	

P.	
 Carns	
 et	
 al.	
 Understanding	
 and	
 improving	
 computaGonal	
 science	
 storage	
 access	
 through	
 conGnuous	
 characterizaGon.	

In	
 Proceedings	
 of	
 27th	
 IEEE	
 Conference	
 on	
 Mass	
 Storage	
 Systems	
 and	
 Technologies	
 (MSST	
 2011),	
 May	
 2011.	
 	

Challenge: Inertia (or Data Models and Semantics)

§  The	
 connecGon	
 (interface)	
 between	

applicaGons	
 and	
 storage	
 should	
 reflect	
 the	

models	
 used	
 in	
 science	
 codes	

–  (e.g.,	
 structured	
 and	
 unstructured	
 meshes,	

parGcles,	
 varying	
 levels	
 of	
 fidelity)	

§  POSIX	
 sucks	
 as	
 an	
 I/O	
 model	
 for	

computaGonal	
 science	

–  Neither	
 convenient	
 nor	
 easy	
 to	
 reach	
 high	

performance	
 for	
 real	
 workloads	

–  Serves	
 as	
 a	
 conGnual	
 distracGon	
 from	
 more	

producGve	
 development	

§  Need	
 to	
 present	
 an	
 alternaGve	
 storage	
 model	

–  Object	
 storage	
 (i.e.,	
 OSD)	
 is	
 a	
 nice	
 start	

–  Need	
 more	
 understanding	
 of	
 name	
 spaces	

–  Must	
 consider	
 analysis	
 use	
 cases	
 as	
 well	

§  TemptaGon	
 to	
 “support	
 POSIX”	
 will	
 remain	

and	
 taint	
 most	
 efforts.	

3	

!

"

x

y

(a) (b)

Figure 2: Cross-sections of the spectral element mesh used for LES of 217-pin configuration:

(a) z = 0, (b) close-up at z = 3D. The dark lines indicate the boundaries of the spectral

elements, each of which contains N3 cells (N2 in the plane).

ranging from 230 to 630 gpm. For a single wire-wrap pitch, the geometry comprises 438

subchannels of length H/Dh = 73.4, for a total channel length of approximately 32000

Dh (roughly 20000 times the length of a standard turbulent channel flow simulation). To

further reduce computational costs, we restrict our attention to a single pitch of the wire

wrap and use periodic boundary conditions at the axial planes z = 0 and z = H. Flow

is established through an axial forcing (corresponding to mean pressure gradient) that is

varied in time using a feedback loop to achieve a fixed flow rate. The simulations are

carried out in nondimensional units with D as the characteristic length scale and D/U as

the time scale, where U is the mean velocity. The viscosity is set to ν = 1/ReD, with

ReD := DU/ν = 15000.

2.2 Discretization

The spatial discretization in Nek5000 is based on the spectral element method (SEM), in

which the solution, geometry, and data are expressed as Nth-order tensor-product poly-

nomials on hexahedral (curvilinear brick) elements. The polynomial basis functions are

Lagrange interpolants based on Gauss-Lobatto-Legendre quadrature points. The discrete

equations are derived from standard weighted residual (Galerkin) procedures, resulting in

a large system of nonlinear ordinary differential equations for the basis coefficients. The

current simulations are based on the the consistent velocity-pressure formulation in which

the pressure is represented as piecewise discontinuous polynomials of order N − 2 [?]. For

a collection of E elements in three dimensions, the number of gridpoints is approximately

n = EN3 for velocity and np = E(N − 1)3 for pressure, with N =5–15 being typical.

Further details of the SEM are given in [?, ?, ?].

Nek5000 advances the Navier-Stokes equations using semi-implicit timestepping. The

advective terms for momentum and thermal transport are treated explicitly, giving rise to

6

Cross-­‐secGon	
 of	
 spectral	

element	
 mesh	
 used	
 in	
 large	

eddy	
 simulaGon	
 of	
 217-­‐pin	

reactor	
 subassembly.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Image	
 from	
 P.	
 Fischer	
 (ANL).	

Challenge: Understanding

§  Applica,ons.	
 Need	
 more	
 informaGon	
 on	
 current	
 and	
 future	
 applicaGon	
 I/O	

needs.	
 InformaGon	
 should	
 guide	
 design.	
 See	
 Darshan,	
 IPM-­‐IO,	
 ScalaTrace.	

§  Storage	
 Designs.	
 Exascale	
 storage	
 will	
 be	
 complex	
 mix	
 of	
 heterogeneous	

components.	
 Need	
 tools	
 to	
 help	
 us	
 explore	
 the	
 HW/SW	
 design	
 space	
 quickly	

and	
 efficiently	
 before	
 we	
 start	
 building,	
 while	
 we	
 conGnue	
 development.	
 See	

CODES,	
 HECIOS,	
 IMPIOUS,	
 PFSsim.	

4	

7

!

"

#!

#"

$!

$"

%!

%"

&!

#!$& $!&' &!() '#($ #)%'& %$*)')""%) #%#!*$

!
"
#
$
%
&$
'(
)*
+
&!
,-
.
/0
)

12&.#')345/.--.-)

+,-./0,12345617812

-./0,1236/9+.-:12

-./0,12345617812

+,/;+136/9+.-:12

+,/;+1345617812

!

"

#!

#"

$!

$"

%!

%"

&!

&"

#!$& $!&' &!() '#($ #)%'& %$*)')""%) #%#!*$

!
"
#
$
%
&$
'(
)*
+
&!
,-
.
/
0)

12&.#')345/.--.-)

+,-./01234/5167-4387/05193:64-;/0

+,-./01234/5167-4387/051<=9/.>/0

+,-./01234/51-4387/05193:64-;/0

+,-./01234/51-4387/051<=9/.>/0

?34/@A/.@A.<B/995193:64-;/0

?34/@A/.@A.<B/9951<=9/.>/0

(a) write

!

"!

#!

$!

%!

&!

'!

"!#% #!%(%!)' (")# "'$(% $#*'('&&$' "$"!*#

!
"
#
$
%
&$
'(
)*
+
&!
,-
.
/
0)

12&.#')345/.--.-)

+,-./01234/5167-4387/05193:64-;/0

+,-./01234/5167-4387/051<=9/.>/0

+,-./01234/51-4387/05193:64-;/0

+,-./01234/51-4387/051<=9/.>/0

?34/@A/.@A.<B/995193:64-;/0

?34/@A/.@A.<B/9951<=9/.>/0

(b) read

Fig. 4: Comparison of simulated and observed IOR performance. Figure 4a illus-
trates results using IOR write workloads. Figure 4b illustrates results using IOR
read workloads.

store its data into a unique file that was inaccessible by other processes. The
file-per-process tests required the file system to perform additional metadata
operations, such as file creations, that are not required in the shared file tests.
The stripe-aligned tests used 4 MiB (4×220 bytes) accesses for a total of 64 MiB
per process. Stripe-aligned accesses caused each processes file requests to align
with the stripe of the file. This allowed 4 MiB accesses to be made directly to
the DDN LUN. The stripe-unaligned tests used 4 MB (4× 106 bytes) accesses
for a total of 64 MB per process. The stripe-unaligned accesses spanned multiple
file stripes and required most requests to processed by more than one file server.

The results of our IOR write validation experiments closely follows the re-
sults observed during our previous study. The results for these experiments are
illustrated in Figure 4a. The overall file system performance trend for write re-
quests is correctly captured by our simulator. Like the results reported in our
previous study, the simulator performance for write requests levels off at 64K
processes and remains constant at larger scales. Our simulated results capture
the performance variations from 2K to 128K client processes at roughly a 10%
error rate. Specifically, the model is able to capture the extra overhead for both
the stripe-unaligned experiments and file-per-process experiments. In the prior
study, we observed network contention within the storage system network that
caused file system performance degradation. We believe that we can capture
this behavior within our models by artificially limiting the message rate per re-
source destination. We believe this adjustment may improve the error rate of
the stripe-unaligned tests.

Figure 4b illustrates the IOR benchmark throughput for observed and simu-
lated read operations. Like the write experiments, the stripe-aligned and stripe-
unaligned accesses were investigated using 4 MiB and 4 MB PVFS stripe sizes.
Our results show that the stripe-aligned read throughput closely follows the ob-
served performance of Intrepid’s PVFS storage systems. Our model is able to
capture most of the performance variations for stripe-aligned read and file-per-
process read experiments. It yields more error in stripe-unaligned read tests. The

Write	

 N.	
 Liu	
 et	
 al.	
 Modeling	
 a	
 Leadership-­‐scale	
 Storage	
 System.	
 In	
 Proceedings	
 of	

the	
 9th	
 InternaGonal	
 Conference	
 on	
 Parallel	
 Processing	
 and	
 Applied	

MathemaGcs	
 (PPAM	
 2011).	
 September	
 2011	
 (paper	
 to	
 appear).	

5

Equation 1 computes the perceived throughput of a network operation (T) based
on the size of the data payload (DP), the maximum link throughput (TL),
and the size of non-payload data associated with the transfer (DO). The data
throughput and access latency of the DDN storage devices are modeled as a
simple, constant function. Parameters for both models were obtained by using
micro-benchmarks that measured the observed throughput between the various
devices in the ALCF computing environment.

Multiple software layers are involved in Intrepid’s I/O path. Our software
models approximate the interfaces, protocols, and interactions of the software
components deployed in the ALCF computing environment. The software models
and interfaces sit on top of the hardware LPs and trigger hardware events for
I/O operations. At the application layer, our models provide a POSIX-like I/O
interface. Our application-level models translate application I/O requests into
CIOD client requests using a series of CN and ION events. These CN and ION
events reflect the interaction between the CIOD clients and servers. The CIOD
server receives the CIOD client requests and generates a series of ION and storage
server hardware requests that approximate the interaction of the CIOD server
and the PVFS file system. The PVFS file system then generates a series of
storage server and DDN events that approximate the interactions between the
storage server and the DDN storage devices. The number and types of events
generated by our models depend upon the complexity of the I/O system software
protocol for a specific I/O layer.

Several parameters are associated with the software models. The most im-
portant parameters are the CIOD transfer size and the PVFS stripe size. CIOD
limits the amount of data that can be transferred in a single I/O operation (4
MiB default value on Intrepid). CIOD requires multiple operations to transfer
requests larger than 4 MiB. The PVFS stripe size dictates the block size dis-
tributed to the PVFS file servers (4 MiB default value on Intrepid) and file
alignment. Requests that are not aligned on a 4 MiB boundary or exceed a 4
MiB capacity require access to multiple PVFS servers per I/O operation.

!"#$%!"&'(
%'#$

!"#$%!"&'(
"))*+'

!"#$%!"&'(
,)-.'%%

!"#$%!"&'(
".&

!"#$%!"&'(
'#$

$"/"("))*+'
$"/"(
,)-.'%%

!" #$" %& ''"

$"/"(%'#$
!"#$%!"&'(
%'#$

!"#$%!"&'(
"))*+'

!"#$%!"&'(
,)-.'%%

!"#$%!"&'(
".&

!"#$%!"&'(
'#$

$"/"(%'#$ $"/"("))*+'
$"/"(
,)-.'%%

!"#$%!"&'(
%'#$

!"#$%!"&'(
"))*+'

!"#$%!"&'(
,)-.'%%

!"#$%!"&'(
".&

!"#$%!"&'(
'#$

$"/"(%'#$ $"/"("))*+'
$"/"(
,)-.'%%

$"/"(".&$"/"(".&$"/"(".&$"/"(".&

0)*/'(
)'12'%/

0)*/'(".&

Fig. 3: CODES file write request model for Intrepid.

The CODES storage system simulator implements the necessary protocols to
provide application-level file open, close, read, and write using the ALCF hard-
ware and software models. Figure 3 depicts the PDES model used for application

Current	
 CODES	
 model	
 includes	
 simulaGon	
 of	

I/O	
 protocols	
 on	
 all	
 major	
 BG/P	
 components.	

First	
 goal	
 is	
 to	
 validate	
 with	
 BG/P	
 data.	

Acknowledgment

This	
 work	
 was	
 supported	
 by	
 the	
 Office	
 of	
 Advanced	
 ScienGfic	
 CompuGng	

Research,	
 Office	
 of	
 Science,	
 U.S.	
 Dept.	
 of	
 Energy,	
 under	
 Contract	
 DE-­‐
AC02-­‐06CH11357.	

	

Our	
 work	
 is	
 only	
 possible	
 with	
 the	
 help	
 of	
 our	
 many	
 collaborators,	
 including:	

§  Alok	
 Choudhary,	
 Kui	
 Gao,	
 Wei-­‐keng	
 Liao,	
 Arifa	
 Nisar	
 (NWU)	

§  Kwan-­‐Liu	
 Ma,	
 Hongfeng	
 Yu	
 (UC	
 Davis)	

§  Lee	
 Ward	
 (SNL)	

§  Gary	
 Grider,	
 James	
 Nunez	
 (LANL)	

§  Steve	
 Poole,	
 Terry	
 Jones	
 (ORNL)	

§  Yutaka	
 Ishikawa,	
 Kazuki	
 Ohta	
 (University	
 of	
 Tokyo)	

§  Javier	
 Blas,	
 Florin	
 Isaila	
 (University	
 Carlos	
 III	
 of	
 Madrid)	

	

5	

