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The Obvious Challenges 

§  Bulk	  data	  movement.	  GoJa	  reduce	  synchronizaGon	  in	  the	  I/O	  path,	  help	  users	  
perform	  in	  situ	  analysis	  to	  reduce	  I/O	  overall,	  and	  use	  in-‐system	  storage	  
resources	  to	  best	  drive	  I/O	  to	  external	  storage.	  

§  Reliability.	  Must	  hide	  failures	  when	  possible	  and	  degrade	  gracefully	  when	  not.	  
See	  Internet	  services	  storage	  soluGons	  for	  ideas.	  	  
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Aggregate	  I/O	  throughput	  on	  BG/P	  storage	  servers	  at	  one	  minute	  intervals.	  Lots	  of	  
bandwidth	  is	  leT	  on	  the	  floor.	  

P.	  Carns	  et	  al.	  Understanding	  and	  improving	  computaGonal	  science	  storage	  access	  through	  conGnuous	  characterizaGon.	  
In	  Proceedings	  of	  27th	  IEEE	  Conference	  on	  Mass	  Storage	  Systems	  and	  Technologies	  (MSST	  2011),	  May	  2011.	  	  



Challenge: Inertia (or Data Models and Semantics) 

§  The	  connecGon	  (interface)	  between	  
applicaGons	  and	  storage	  should	  reflect	  the	  
models	  used	  in	  science	  codes	  
–  (e.g.,	  structured	  and	  unstructured	  meshes,	  

parGcles,	  varying	  levels	  of	  fidelity)	  

§  POSIX	  sucks	  as	  an	  I/O	  model	  for	  
computaGonal	  science	  
–  Neither	  convenient	  nor	  easy	  to	  reach	  high	  

performance	  for	  real	  workloads	  
–  Serves	  as	  a	  conGnual	  distracGon	  from	  more	  

producGve	  development	  

§  Need	  to	  present	  an	  alternaGve	  storage	  model	  
–  Object	  storage	  (i.e.,	  OSD)	  is	  a	  nice	  start	  
–  Need	  more	  understanding	  of	  name	  spaces	  
–  Must	  consider	  analysis	  use	  cases	  as	  well	  

§  TemptaGon	  to	  “support	  POSIX”	  will	  remain	  
and	  taint	  most	  efforts.	  
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Figure 2: Cross-sections of the spectral element mesh used for LES of 217-pin configuration:

(a) z = 0, (b) close-up at z = 3D. The dark lines indicate the boundaries of the spectral

elements, each of which contains N3 cells (N2 in the plane).

ranging from 230 to 630 gpm. For a single wire-wrap pitch, the geometry comprises 438

subchannels of length H/Dh = 73.4, for a total channel length of approximately 32000

Dh (roughly 20000 times the length of a standard turbulent channel flow simulation). To

further reduce computational costs, we restrict our attention to a single pitch of the wire

wrap and use periodic boundary conditions at the axial planes z = 0 and z = H. Flow

is established through an axial forcing (corresponding to mean pressure gradient) that is

varied in time using a feedback loop to achieve a fixed flow rate. The simulations are

carried out in nondimensional units with D as the characteristic length scale and D/U as

the time scale, where U is the mean velocity. The viscosity is set to ν = 1/ReD, with

ReD := DU/ν = 15000.

2.2 Discretization

The spatial discretization in Nek5000 is based on the spectral element method (SEM), in

which the solution, geometry, and data are expressed as Nth-order tensor-product poly-

nomials on hexahedral (curvilinear brick) elements. The polynomial basis functions are

Lagrange interpolants based on Gauss-Lobatto-Legendre quadrature points. The discrete

equations are derived from standard weighted residual (Galerkin) procedures, resulting in

a large system of nonlinear ordinary differential equations for the basis coefficients. The

current simulations are based on the the consistent velocity-pressure formulation in which

the pressure is represented as piecewise discontinuous polynomials of order N − 2 [?]. For

a collection of E elements in three dimensions, the number of gridpoints is approximately

n = EN3 for velocity and np = E(N − 1)3 for pressure, with N =5–15 being typical.

Further details of the SEM are given in [?, ?, ?].

Nek5000 advances the Navier-Stokes equations using semi-implicit timestepping. The

advective terms for momentum and thermal transport are treated explicitly, giving rise to
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Cross-‐secGon	  of	  spectral	  
element	  mesh	  used	  in	  large	  
eddy	  simulaGon	  of	  217-‐pin	  
reactor	  subassembly.	  	  
	  	  	  	  	  	  	  	  	  	  Image	  from	  P.	  Fischer	  (ANL).	  



Challenge: Understanding 

§  Applica,ons.	  Need	  more	  informaGon	  on	  current	  and	  future	  applicaGon	  I/O	  
needs.	  InformaGon	  should	  guide	  design.	  See	  Darshan,	  IPM-‐IO,	  ScalaTrace.	  

§  Storage	  Designs.	  Exascale	  storage	  will	  be	  complex	  mix	  of	  heterogeneous	  
components.	  Need	  tools	  to	  help	  us	  explore	  the	  HW/SW	  design	  space	  quickly	  
and	  efficiently	  before	  we	  start	  building,	  while	  we	  conGnue	  development.	  See	  
CODES,	  HECIOS,	  IMPIOUS,	  PFSsim.	  
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(a) write
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(b) read

Fig. 4: Comparison of simulated and observed IOR performance. Figure 4a illus-
trates results using IOR write workloads. Figure 4b illustrates results using IOR
read workloads.

store its data into a unique file that was inaccessible by other processes. The
file-per-process tests required the file system to perform additional metadata
operations, such as file creations, that are not required in the shared file tests.
The stripe-aligned tests used 4 MiB (4×220 bytes) accesses for a total of 64 MiB
per process. Stripe-aligned accesses caused each processes file requests to align
with the stripe of the file. This allowed 4 MiB accesses to be made directly to
the DDN LUN. The stripe-unaligned tests used 4 MB (4× 106 bytes) accesses
for a total of 64 MB per process. The stripe-unaligned accesses spanned multiple
file stripes and required most requests to processed by more than one file server.

The results of our IOR write validation experiments closely follows the re-
sults observed during our previous study. The results for these experiments are
illustrated in Figure 4a. The overall file system performance trend for write re-
quests is correctly captured by our simulator. Like the results reported in our
previous study, the simulator performance for write requests levels off at 64K
processes and remains constant at larger scales. Our simulated results capture
the performance variations from 2K to 128K client processes at roughly a 10%
error rate. Specifically, the model is able to capture the extra overhead for both
the stripe-unaligned experiments and file-per-process experiments. In the prior
study, we observed network contention within the storage system network that
caused file system performance degradation. We believe that we can capture
this behavior within our models by artificially limiting the message rate per re-
source destination. We believe this adjustment may improve the error rate of
the stripe-unaligned tests.

Figure 4b illustrates the IOR benchmark throughput for observed and simu-
lated read operations. Like the write experiments, the stripe-aligned and stripe-
unaligned accesses were investigated using 4 MiB and 4 MB PVFS stripe sizes.
Our results show that the stripe-aligned read throughput closely follows the ob-
served performance of Intrepid’s PVFS storage systems. Our model is able to
capture most of the performance variations for stripe-aligned read and file-per-
process read experiments. It yields more error in stripe-unaligned read tests. The

Write	
 N.	  Liu	  et	  al.	  Modeling	  a	  Leadership-‐scale	  Storage	  System.	  In	  Proceedings	  of	  
the	  9th	  InternaGonal	  Conference	  on	  Parallel	  Processing	  and	  Applied	  
MathemaGcs	  (PPAM	  2011).	  September	  2011	  (paper	  to	  appear).	  
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Equation 1 computes the perceived throughput of a network operation (T ) based
on the size of the data payload (DP ), the maximum link throughput (TL),
and the size of non-payload data associated with the transfer (DO). The data
throughput and access latency of the DDN storage devices are modeled as a
simple, constant function. Parameters for both models were obtained by using
micro-benchmarks that measured the observed throughput between the various
devices in the ALCF computing environment.

Multiple software layers are involved in Intrepid’s I/O path. Our software
models approximate the interfaces, protocols, and interactions of the software
components deployed in the ALCF computing environment. The software models
and interfaces sit on top of the hardware LPs and trigger hardware events for
I/O operations. At the application layer, our models provide a POSIX-like I/O
interface. Our application-level models translate application I/O requests into
CIOD client requests using a series of CN and ION events. These CN and ION
events reflect the interaction between the CIOD clients and servers. The CIOD
server receives the CIOD client requests and generates a series of ION and storage
server hardware requests that approximate the interaction of the CIOD server
and the PVFS file system. The PVFS file system then generates a series of
storage server and DDN events that approximate the interactions between the
storage server and the DDN storage devices. The number and types of events
generated by our models depend upon the complexity of the I/O system software
protocol for a specific I/O layer.

Several parameters are associated with the software models. The most im-
portant parameters are the CIOD transfer size and the PVFS stripe size. CIOD
limits the amount of data that can be transferred in a single I/O operation (4
MiB default value on Intrepid). CIOD requires multiple operations to transfer
requests larger than 4 MiB. The PVFS stripe size dictates the block size dis-
tributed to the PVFS file servers (4 MiB default value on Intrepid) and file
alignment. Requests that are not aligned on a 4 MiB boundary or exceed a 4
MiB capacity require access to multiple PVFS servers per I/O operation.
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Fig. 3: CODES file write request model for Intrepid.

The CODES storage system simulator implements the necessary protocols to
provide application-level file open, close, read, and write using the ALCF hard-
ware and software models. Figure 3 depicts the PDES model used for application

Current	  CODES	  model	  includes	  simulaGon	  of	  
I/O	  protocols	  on	  all	  major	  BG/P	  components.	  
First	  goal	  is	  to	  validate	  with	  BG/P	  data.	  
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