
Overcoming Roadblocks to
Exascale Storage

Rob	 Ross,	 Pete	 Beckman,	 Phil	 Carns,	 Jason	 Cope,	 Kevin	 Harms,	 	
Kamil	 Iskra,	 Dries	 Kimpe,	 Rob	 Latham,	 Rusty	 Lusk,	 Tom	 Peterka,	
Katherine	 Riley,	 Seung	 Woo	 Son,	 Rajeev	 Thakur,	 Venkat	 Vishwanath,	
and	 JusGn	 Wozniak	
Mathema,cs	 and	 Computer	 Science	 Division	
Argonne	 Na,onal	 Laboratory	
rross@mcs.anl.gov	

The Obvious Challenges

§  Bulk	 data	 movement.	 GoJa	 reduce	 synchronizaGon	 in	 the	 I/O	 path,	 help	 users	
perform	 in	 situ	 analysis	 to	 reduce	 I/O	 overall,	 and	 use	 in-‐system	 storage	
resources	 to	 best	 drive	 I/O	 to	 external	 storage.	

§  Reliability.	 Must	 hide	 failures	 when	 possible	 and	 degrade	 gracefully	 when	 not.	
See	 Internet	 services	 storage	 soluGons	 for	 ideas.	 	

2	

 0

 5

 10

 15

 20

 25

 30

 35

 40

01/23

01/24

01/25

01/26

01/27

01/28

01/29

01/30

01/31

02/01

02/02

02/03

02/04

02/05

02/06

02/07

02/08

02/09

02/10

02/11

02/12

02/13

02/14

02/15

02/16

02/17

02/18

02/19

02/20

02/21

02/22

02/23

02/24

02/25

02/26

02/27

02/28

03/01

03/02

03/03

03/04

03/05

03/06

03/07

03/08

03/09

03/10

03/11

03/12

03/13

03/14

03/15

03/16

03/17

03/18

03/19

03/20

03/21

03/22

03/23

03/24

03/25

03/26

G
B

y
te

s
/s

scheduled maintenance

missing data

scheduled maintenance

network maintenance

storage maintenance

EarthScience project usage change

scheduled maintenance

control system maintenance
 and scheduled maintenance

Read
Write

Aggregate	 I/O	 throughput	 on	 BG/P	 storage	 servers	 at	 one	 minute	 intervals.	 Lots	 of	
bandwidth	 is	 leT	 on	 the	 floor.	

P.	 Carns	 et	 al.	 Understanding	 and	 improving	 computaGonal	 science	 storage	 access	 through	 conGnuous	 characterizaGon.	
In	 Proceedings	 of	 27th	 IEEE	 Conference	 on	 Mass	 Storage	 Systems	 and	 Technologies	 (MSST	 2011),	 May	 2011.	 	

Challenge: Inertia (or Data Models and Semantics)

§  The	 connecGon	 (interface)	 between	
applicaGons	 and	 storage	 should	 reflect	 the	
models	 used	 in	 science	 codes	
–  (e.g.,	 structured	 and	 unstructured	 meshes,	

parGcles,	 varying	 levels	 of	 fidelity)	

§  POSIX	 sucks	 as	 an	 I/O	 model	 for	
computaGonal	 science	
–  Neither	 convenient	 nor	 easy	 to	 reach	 high	

performance	 for	 real	 workloads	
–  Serves	 as	 a	 conGnual	 distracGon	 from	 more	

producGve	 development	

§  Need	 to	 present	 an	 alternaGve	 storage	 model	
–  Object	 storage	 (i.e.,	 OSD)	 is	 a	 nice	 start	
–  Need	 more	 understanding	 of	 name	 spaces	
–  Must	 consider	 analysis	 use	 cases	 as	 well	

§  TemptaGon	 to	 “support	 POSIX”	 will	 remain	
and	 taint	 most	 efforts.	

3	

!

"

x

y

(a) (b)

Figure 2: Cross-sections of the spectral element mesh used for LES of 217-pin configuration:

(a) z = 0, (b) close-up at z = 3D. The dark lines indicate the boundaries of the spectral

elements, each of which contains N3 cells (N2 in the plane).

ranging from 230 to 630 gpm. For a single wire-wrap pitch, the geometry comprises 438

subchannels of length H/Dh = 73.4, for a total channel length of approximately 32000

Dh (roughly 20000 times the length of a standard turbulent channel flow simulation). To

further reduce computational costs, we restrict our attention to a single pitch of the wire

wrap and use periodic boundary conditions at the axial planes z = 0 and z = H. Flow

is established through an axial forcing (corresponding to mean pressure gradient) that is

varied in time using a feedback loop to achieve a fixed flow rate. The simulations are

carried out in nondimensional units with D as the characteristic length scale and D/U as

the time scale, where U is the mean velocity. The viscosity is set to ν = 1/ReD, with

ReD := DU/ν = 15000.

2.2 Discretization

The spatial discretization in Nek5000 is based on the spectral element method (SEM), in

which the solution, geometry, and data are expressed as Nth-order tensor-product poly-

nomials on hexahedral (curvilinear brick) elements. The polynomial basis functions are

Lagrange interpolants based on Gauss-Lobatto-Legendre quadrature points. The discrete

equations are derived from standard weighted residual (Galerkin) procedures, resulting in

a large system of nonlinear ordinary differential equations for the basis coefficients. The

current simulations are based on the the consistent velocity-pressure formulation in which

the pressure is represented as piecewise discontinuous polynomials of order N − 2 [?]. For

a collection of E elements in three dimensions, the number of gridpoints is approximately

n = EN3 for velocity and np = E(N − 1)3 for pressure, with N =5–15 being typical.

Further details of the SEM are given in [?, ?, ?].

Nek5000 advances the Navier-Stokes equations using semi-implicit timestepping. The

advective terms for momentum and thermal transport are treated explicitly, giving rise to

6

Cross-‐secGon	 of	 spectral	
element	 mesh	 used	 in	 large	
eddy	 simulaGon	 of	 217-‐pin	
reactor	 subassembly.	 	
	 	 	 	 	 	 	 	 	 	 Image	 from	 P.	 Fischer	 (ANL).	

Challenge: Understanding

§  Applica,ons.	 Need	 more	 informaGon	 on	 current	 and	 future	 applicaGon	 I/O	
needs.	 InformaGon	 should	 guide	 design.	 See	 Darshan,	 IPM-‐IO,	 ScalaTrace.	

§  Storage	 Designs.	 Exascale	 storage	 will	 be	 complex	 mix	 of	 heterogeneous	
components.	 Need	 tools	 to	 help	 us	 explore	 the	 HW/SW	 design	 space	 quickly	
and	 efficiently	 before	 we	 start	 building,	 while	 we	 conGnue	 development.	 See	
CODES,	 HECIOS,	 IMPIOUS,	 PFSsim.	

4	

7

!

"

#!

#"

$!

$"

%!

%"

&!

#!$& $!&' &!() '#($ #)%'& %$*)')""%) #%#!*$

!
"
#
$
%
&$
'(
)*
+
&!
,-
.
/0
)

12&.#')345/.--.-)

+,-./0,12345617812

-./0,1236/9+.-:12

-./0,12345617812

+,/;+136/9+.-:12

+,/;+1345617812

!

"

#!

#"

$!

$"

%!

%"

&!

&"

#!$& $!&' &!() '#($ #)%'& %$*)')""%) #%#!*$

!
"
#
$
%
&$
'(
)*
+
&!
,-
.
/
0)

12&.#')345/.--.-)

+,-./01234/5167-4387/05193:64-;/0

+,-./01234/5167-4387/051<=9/.>/0

+,-./01234/51-4387/05193:64-;/0

+,-./01234/51-4387/051<=9/.>/0

?34/@A/.@A.<B/995193:64-;/0

?34/@A/.@A.<B/9951<=9/.>/0

(a) write

!

"!

#!

$!

%!

&!

'!

"!#% #!%(%!)' (")# "'$(% $#*'('&&$' "$"!*#

!
"
#
$
%
&$
'(
)*
+
&!
,-
.
/
0)

12&.#')345/.--.-)

+,-./01234/5167-4387/05193:64-;/0

+,-./01234/5167-4387/051<=9/.>/0

+,-./01234/51-4387/05193:64-;/0

+,-./01234/51-4387/051<=9/.>/0

?34/@A/.@A.<B/995193:64-;/0

?34/@A/.@A.<B/9951<=9/.>/0

(b) read

Fig. 4: Comparison of simulated and observed IOR performance. Figure 4a illus-
trates results using IOR write workloads. Figure 4b illustrates results using IOR
read workloads.

store its data into a unique file that was inaccessible by other processes. The
file-per-process tests required the file system to perform additional metadata
operations, such as file creations, that are not required in the shared file tests.
The stripe-aligned tests used 4 MiB (4×220 bytes) accesses for a total of 64 MiB
per process. Stripe-aligned accesses caused each processes file requests to align
with the stripe of the file. This allowed 4 MiB accesses to be made directly to
the DDN LUN. The stripe-unaligned tests used 4 MB (4× 106 bytes) accesses
for a total of 64 MB per process. The stripe-unaligned accesses spanned multiple
file stripes and required most requests to processed by more than one file server.

The results of our IOR write validation experiments closely follows the re-
sults observed during our previous study. The results for these experiments are
illustrated in Figure 4a. The overall file system performance trend for write re-
quests is correctly captured by our simulator. Like the results reported in our
previous study, the simulator performance for write requests levels off at 64K
processes and remains constant at larger scales. Our simulated results capture
the performance variations from 2K to 128K client processes at roughly a 10%
error rate. Specifically, the model is able to capture the extra overhead for both
the stripe-unaligned experiments and file-per-process experiments. In the prior
study, we observed network contention within the storage system network that
caused file system performance degradation. We believe that we can capture
this behavior within our models by artificially limiting the message rate per re-
source destination. We believe this adjustment may improve the error rate of
the stripe-unaligned tests.

Figure 4b illustrates the IOR benchmark throughput for observed and simu-
lated read operations. Like the write experiments, the stripe-aligned and stripe-
unaligned accesses were investigated using 4 MiB and 4 MB PVFS stripe sizes.
Our results show that the stripe-aligned read throughput closely follows the ob-
served performance of Intrepid’s PVFS storage systems. Our model is able to
capture most of the performance variations for stripe-aligned read and file-per-
process read experiments. It yields more error in stripe-unaligned read tests. The

Write	
 N.	 Liu	 et	 al.	 Modeling	 a	 Leadership-‐scale	 Storage	 System.	 In	 Proceedings	 of	
the	 9th	 InternaGonal	 Conference	 on	 Parallel	 Processing	 and	 Applied	
MathemaGcs	 (PPAM	 2011).	 September	 2011	 (paper	 to	 appear).	

5

Equation 1 computes the perceived throughput of a network operation (T) based
on the size of the data payload (DP), the maximum link throughput (TL),
and the size of non-payload data associated with the transfer (DO). The data
throughput and access latency of the DDN storage devices are modeled as a
simple, constant function. Parameters for both models were obtained by using
micro-benchmarks that measured the observed throughput between the various
devices in the ALCF computing environment.

Multiple software layers are involved in Intrepid’s I/O path. Our software
models approximate the interfaces, protocols, and interactions of the software
components deployed in the ALCF computing environment. The software models
and interfaces sit on top of the hardware LPs and trigger hardware events for
I/O operations. At the application layer, our models provide a POSIX-like I/O
interface. Our application-level models translate application I/O requests into
CIOD client requests using a series of CN and ION events. These CN and ION
events reflect the interaction between the CIOD clients and servers. The CIOD
server receives the CIOD client requests and generates a series of ION and storage
server hardware requests that approximate the interaction of the CIOD server
and the PVFS file system. The PVFS file system then generates a series of
storage server and DDN events that approximate the interactions between the
storage server and the DDN storage devices. The number and types of events
generated by our models depend upon the complexity of the I/O system software
protocol for a specific I/O layer.

Several parameters are associated with the software models. The most im-
portant parameters are the CIOD transfer size and the PVFS stripe size. CIOD
limits the amount of data that can be transferred in a single I/O operation (4
MiB default value on Intrepid). CIOD requires multiple operations to transfer
requests larger than 4 MiB. The PVFS stripe size dictates the block size dis-
tributed to the PVFS file servers (4 MiB default value on Intrepid) and file
alignment. Requests that are not aligned on a 4 MiB boundary or exceed a 4
MiB capacity require access to multiple PVFS servers per I/O operation.

!"#$%!"&'(
%'#$

!"#$%!"&'(
"))*+'

!"#$%!"&'(
,)-.'%%

!"#$%!"&'(
".&

!"#$%!"&'(
'#$

$"/"("))*+'
$"/"(
,)-.'%%

!" #$" %& ''"

$"/"(%'#$
!"#$%!"&'(
%'#$

!"#$%!"&'(
"))*+'

!"#$%!"&'(
,)-.'%%

!"#$%!"&'(
".&

!"#$%!"&'(
'#$

$"/"(%'#$ $"/"("))*+'
$"/"(
,)-.'%%

!"#$%!"&'(
%'#$

!"#$%!"&'(
"))*+'

!"#$%!"&'(
,)-.'%%

!"#$%!"&'(
".&

!"#$%!"&'(
'#$

$"/"(%'#$ $"/"("))*+'
$"/"(
,)-.'%%

$"/"(".&$"/"(".&$"/"(".&$"/"(".&

0)*/'(
)'12'%/

0)*/'(".&

Fig. 3: CODES file write request model for Intrepid.

The CODES storage system simulator implements the necessary protocols to
provide application-level file open, close, read, and write using the ALCF hard-
ware and software models. Figure 3 depicts the PDES model used for application

Current	 CODES	 model	 includes	 simulaGon	 of	
I/O	 protocols	 on	 all	 major	 BG/P	 components.	
First	 goal	 is	 to	 validate	 with	 BG/P	 data.	

Acknowledgment

This	 work	 was	 supported	 by	 the	 Office	 of	 Advanced	 ScienGfic	 CompuGng	
Research,	 Office	 of	 Science,	 U.S.	 Dept.	 of	 Energy,	 under	 Contract	 DE-‐
AC02-‐06CH11357.	
	
Our	 work	 is	 only	 possible	 with	 the	 help	 of	 our	 many	 collaborators,	 including:	
§  Alok	 Choudhary,	 Kui	 Gao,	 Wei-‐keng	 Liao,	 Arifa	 Nisar	 (NWU)	
§  Kwan-‐Liu	 Ma,	 Hongfeng	 Yu	 (UC	 Davis)	
§  Lee	 Ward	 (SNL)	
§  Gary	 Grider,	 James	 Nunez	 (LANL)	
§  Steve	 Poole,	 Terry	 Jones	 (ORNL)	
§  Yutaka	 Ishikawa,	 Kazuki	 Ohta	 (University	 of	 Tokyo)	
§  Javier	 Blas,	 Florin	 Isaila	 (University	 Carlos	 III	 of	 Madrid)	
	

5	

