
April 24, 2012 

Secure Identity Management in Lustre 2.X 

Joshua Walgenbach 



April 24, 2012 

Lustre WAN 
Since 2008 IU’s production Lustre WAN file system (DC-WAN) has 
let people access, manage, and share data in a simple and familiar 
way. 
 
•  The file system is the user interface for mounting locations 
•  Provides reliable data transfer 
•  Run applications across the net without transfer of voluminous 

data sets 
 
In order to accomplish this, it has been necessary to span 
heterogeneous name spaces. 



History 
Spanning heterogeneous namespaces was first made possible for 
Lustre 1.4.X through a kernel module and patch developed by IU 
and DDN. 
 
IU implemented subsequent versions for 1.6.X and 1.8.X. 
 
Currently in use at IU as part of DC-WAN and as part of XSEDE's 
Lustre-WAN project, Albedo.  
 
For widest adoption code alterations were made solely to the MDS – 
unfortunately this breaks quotas. 
 
Structural changes to 2.X will require a rewrite, offering opportunities 
to right wrongs, extend the feature set, and simplify the 
management interface  
 
 

April 24, 2012 



OpenSFS 
The board of OpenSFS approved funding to make the rewrite 
possible. 
 
The rewrite will consist of two distinct and interrelated projects: 
 
1.  Static UID mapping which will provide flexible administrative 

control of heterogeneous namespaces. 

2.  Extensions to GSSAPI which will provide for shared key machine 
authentication and encryption. 

April 24, 2012 



UID Mapping in DC-WAN 
•  UID mapping is encapsulated in its own kernel module. 
•  Mapping happens only on the MDS. 
•  Maps are managed in user space via a /proc interface. 
•  Mapping applies to TCP networks only. 
•  Maps are indexed by NID ranges. 
•  Does not support quotas. 
 

April 24, 2012 



New UID Mapping Model 
•  Changes to the Lustre code base will be restricted. 
•  UID Mapping will still be encapsulated in its own kernel module. 
•  UID Mapping will no longer be limited to the MDS. 
•  Will provide quota support. 
•  MGS will hold the canonical map and update the other servers. 
•  Update method will borrow heavily from imperative recovery. 
•  Will organize client sets as clusters. 

April 24, 2012 



Clusters 
We define a cluster as a partitioned set of NIDs (clients) that share a 
UID/GID name space. 
 
It is a convenient way to think and talk about client nodes mounting 
the file system. It is also a convenient way to codify identity 
mapping. 
 
When a client connects to a server, part of the process will be 
categorizing the client into a cluster, and thus giving it a pointer into 
the maps for forward and reverse UID/GID mapping. 
 
This provides for a relatively small amount of memory usage when 
compared to a current (2.X) idmap implementation with the same 
mappings. 

April 24, 2012 



April 24, 2012 

cluster name

unmapped UID

unmapped GID

ags
(trusted cluster, admin, etc)

range list

client2lesystem UID RB Tree

client2lesystem GID RB Tree

lesystem2client UID RB Tree

lesystem2client GID RB Tree

pointer to next cluster

version id

pointer to cluster list

pointer to previous cluster table



Updating Method 
The Management server manages the cluster table. 
 
When the cluster table is updated on the MGS, the MGS uses the 
callback provided in the request for the shared lock to inform the 
server that there is an update. 
 
The server (MDS/OSS) then provides the MGS with the version id of 
the cluster table it currently holds in memory. The MGS calculates 
the delta between that version and the current canonical version, 
and provides the changes to be applied to the server (MDS/OSS). 
 
This borrows heavily from the design of imperative recovery design. 

April 24, 2012 



MGS MDS/OSS

Obtain Shared 
Lock on Cluster 

Table

Call Shared 
Lock Callback

Pass Version of 
Cluster Table

Cluster 
Table 

Updated

Calculate 
Difference Between 
MDS/OSS Version 

and Canonical
Return Table 

Changes

April 24, 2012 



Trust 

•  The file system servers must trust the clients. 

•  No security scheme can protect a client from itself. 

•  The best we can do is mitigate the risk, and protect one client (or 
set of clients) from another. 

April 24, 2012 



Extensions to GSSAPI 
Generic Security Services Application Program Interface 
 
The security model in Lustre 2.X is properly called GSSAPI with a 
Kerberos mechanism. 
 
GSSAPI in Lustre can be viewed as a vacuum cleaner with only one 
attachment. 
 
We don’t want to ditch the vacuum cleaner, just add another 
attachment! 

April 24, 2012 



Existing GSSAPI Mechanism 
•  Not every organization runs (or wants to run) Kerberos. 
•  Not every organization wants to do cross-realm. 
•  Kerberos works best in an interactive environment. 

•  User credentials time-out. 
•  User credential distribution can be a challenge. 
•  User credential keytabs are the equivalent of having the user 

store their password in a file. 
•  All GSSAPI security mechanisms are vulnerable to root 

compromise.  
•  Ultimately, user authentication only provides UID mapping. 

April 24, 2012 



Machine to Machine Authentication 
GSSAPI provides the following functionality: 
 
•  Authenticating connections between machines. 

•  Authenticating machines passing messages to each other – 
Hashed Message Authentication Codes (HMAC) to prevent 
messages from being injected by a third party. 

•  Protecting the data on the wire by encryption. 

April 24, 2012 



Shared Keys 
 
GSSAPI supports both HMAC and encryption. A backend 
mechanism needs to be written.   
 
A shared key implementation can provide both HMAC and 
symmetric encryption without requiring a centralized infrastructure,  
for both RPC and bulk data transfer methods.  
 
The Linux kernel crypto module hashing and encryption functions 
will be used – no need for reinventing the wheel. 
 
 
 

April 24, 2012 



Conclusion 
Indiana University’s development of a lightweight UID mapping 
scheme has provided researchers with the ability to share data 
across namespace borders within and outside the borders of 
institutions. 
 
With OpenSFS support we will be able to extend and enhance 
previous work for wider adoption of Lustre across unsecured 
networks. 
 
When development is complete, future versions of Lustre will 
provide static UID mapping and a non-centralized GSSAPI 
extension, paving a struggle-free path for Lustre administrators to 
help their users collaborate in new ways. 
  

April 24, 2012 



Many Thanks 
•  Stephen Simms, Nathan Heald, Justin Miller, Eric Isaacson, Matt 

Link, Robert Henchel, Scott Michael, Bret Hammond (IU) 
•  Kit Westneat (NYU) 
•  Eric Barton, Andreas Dilger, Robert Read (Whamcloud) 
•  The Technical Working Group of OpenSFS 
•  The Board of OpenSFS 

April 24, 2012 


