Lustre User Group 2012 April 23, 2012

Brian Behlendorf, Sequoia's 55PB Lustre+ZFS Filesystem

Lawrence Livermore National Laboratory

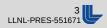
LLNL-PRES-551671

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract

DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Outline

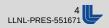
- Why ZFS
- Status Update
 - Sequoia Storage Hardware
 - Functionality
 - Stability
- Performance
 - Meta Data (MDTEST)
 - Write / Read (IOR)
- Open Questions
- Summary



Why ZFS

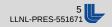
- Scalability
 - Massive storage capacity
 - 2^64 bytes per object
 - 2^78 bytes per pool
 - Dynamic Striping
 - Single OST per OSS
- Cost
 - Combined RAID+LVM+FS
 - Built for inexpensive disk
 - No vendor lock in
 - All open source

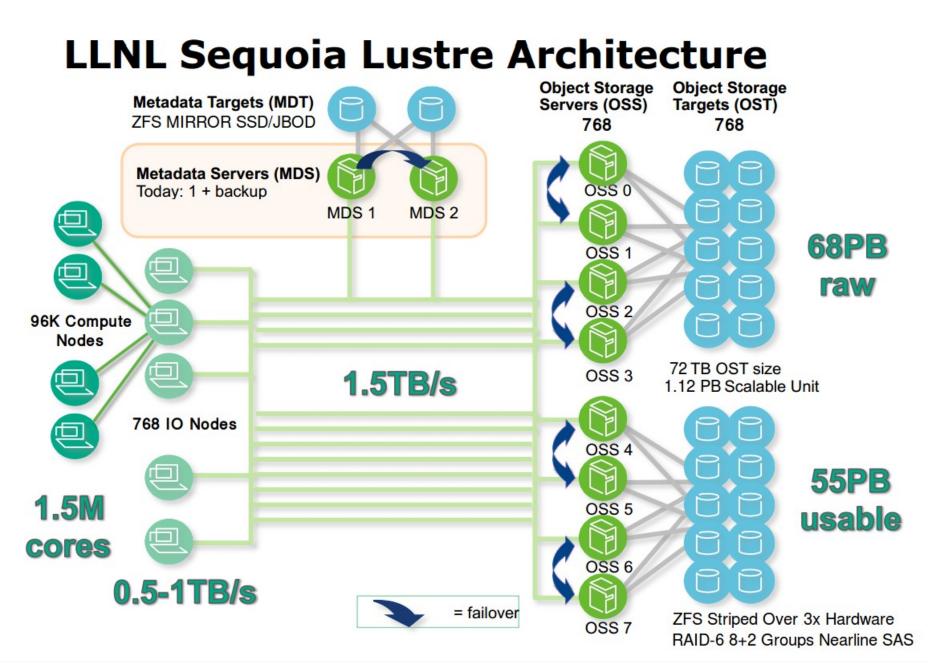
- Data Integrity
 - Copy-on-Write
 - Checksums
 - Meta data and <u>block data</u>
 - Checksums verified on read
 - Automatically repairs damage
 - Multiple copies of meta data
 - Small amount of storage
 - Spread over different disks
 - Ditto Blocks
 - Redundancy Stripes, Mirrors, RAIDZ1, RAIDZ2, RAIDZ3



Why ZFS

- Manageability
 - Online everything
 - Scrubbing
 - Resilvering
 - Pool expansion
 - Configuration changes
 - Fast filesystem creation
 - High quality utilities




- Features
 - Snapshots
 - Clones
 - Compression
 - Deduplication
 - Dataset send / receive
 - Advanced Caching
 - ZFS Intent Log (ZIL)
 - L2ARC
 - Adaptive Endianness
 - Quotas

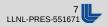
Status Update

- 55PB Lustre+ZFS File system for Sequoia
 - Storage hardware has arrived
 - Lustre+ZFS file system configured
 - File system available to Sequoia users
 - Development still under way
 - Performance work started
- Contract with Whamcloud
 - Development scheduled to be complete in September 2012
 - Available in the Lustre 2.4 release

Lawrence Livermore National Laboratory

6ULLNL-PRES-551671

Sequoia Storage Hardware (OSS)


- NetApp E5400 (LSI)
 - 60-bay 4U Enclosure
 - Dual RAID Controllers
 - 3TB Nearline SAS Disks
 - 180TB RAW Capacity
 - IB Host Attached

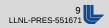
- Appro GreenBlade
 - Intel Xeon E5-2670 (Sandy Bridge)
 - Dual Socket, 8 Core @ 2.60GHz
 - 64GB RAM
 - QDR Mellanox ConnectX-3 IB
 - Dual Port QDR ConnectX-2

Sequoia Storage Hardware (MDS)

- Supermicro X8DTH
 - Intel Xeon X5690 (Westmere)
 - Dual Socket, 6 Core @ 2.47GHZ
 - 192GB RAM
 - QDR Mellanox ConnectX-3 IB
 - Dual Port LSI SAS Adapter

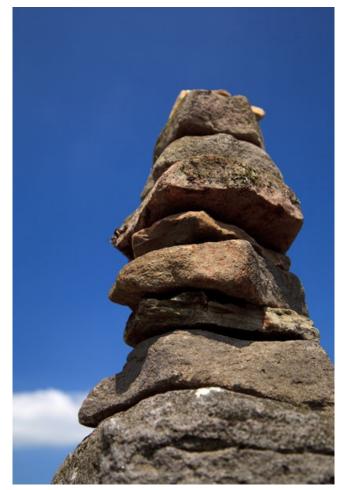
Lawrence Livermore National Laboratory • JBOD

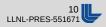
- 24-bay Enclosure
- Dual Controllers
- 40 1TB OCZ Talos 2 SSDs
- 40TB RAW Capacity
- SAS 6GB/s Host Attached



Functionality

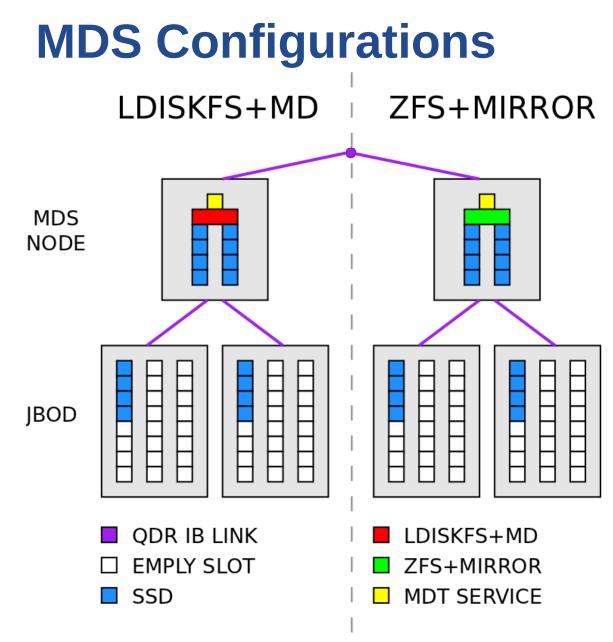
- Critical Components
 Largely Complete
 - OSD API
 - LDISKFS OSD
 - ZFS OSD
 - OFD API
 - LOD API
 - LLOG restructuring
 - MGS/MDT/OST over OSD
 - Patchless ZFS Servers


- Under Development
 - Quota over OSD
 - Changelog over OSD
 - ZIL Integration
 - Linux Drive management



Stability

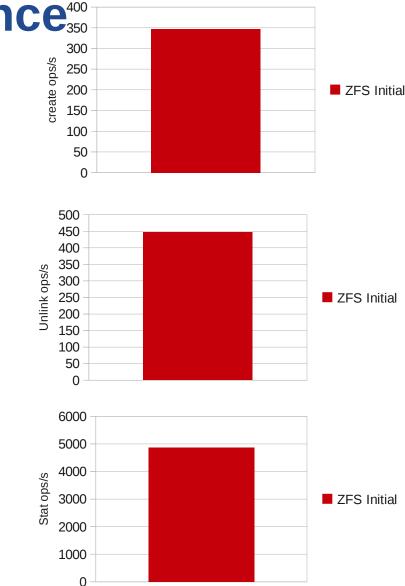
- Reasonably Stable
 - Passes most of the Lustre Test Suite
 - Stable under moderate test loads
 - Issues observed under heavy testing
 - Memory pressure can cause OOMs
 - Lustre and ZFS deadlocks
 - Relatively few panics
 - Working to resolve all issues
 - Real usage on Sequoia will expose any issues missed during testing




Performance

- NOT one of Livermore's main reasons for ZFS
- BUT performance must be reasonably good
- Focused on expected Sequoia workloads
 - Meta data creates / stats / unlinks
 - Defensive I/O checkpoint restart
- Caveats
 - Just started performance analysis
 - Minimal tuning has been done
 - Expect to be able to make significant improvements

- SSDs used for increased IOPs
- All Linux disk
 management

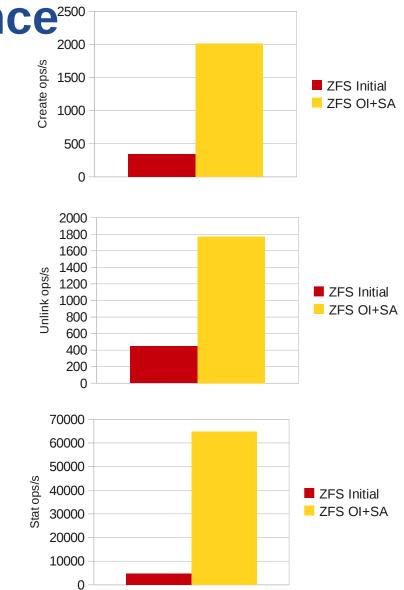

Meta Data Performance⁴⁰⁰ 350

MDTEST

- Parallel create / stat / unlink
- 1,000,000 files
- Single directory
- 52 Clients

FID Hashing

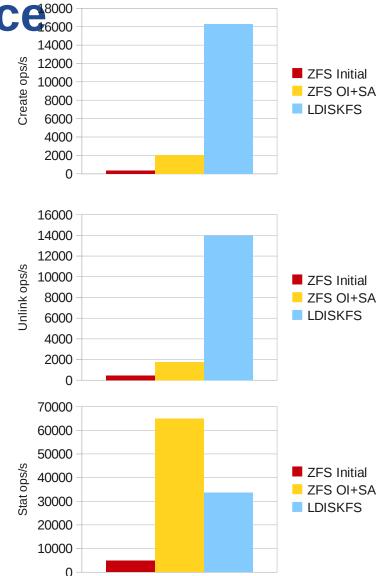
- Very poor hash distribution
- Fixed upstream
- Deadlocks
 - ZFS+Lustre VM Integration
 - Lock inversions

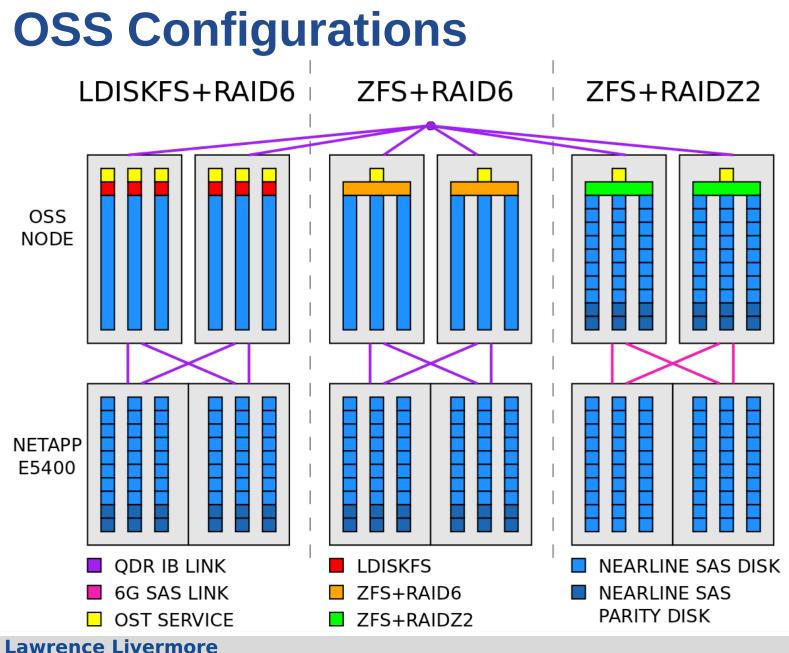


Meta Data Performance²⁵⁰⁰

- Multiple Object Indexes
 - Stores FID to object mapping
 - Implemented with a ZAP
 - ZAPs
 - Designed to scale for capacity
 - Concurrent updates contend
 - Insertion may require a disk
 I/O when leaf block is on disk

System Attributes


- Lustre relies heavily on xattrs
- ZFS xattrs are flexible but slow
- Store the xattr with the dnode

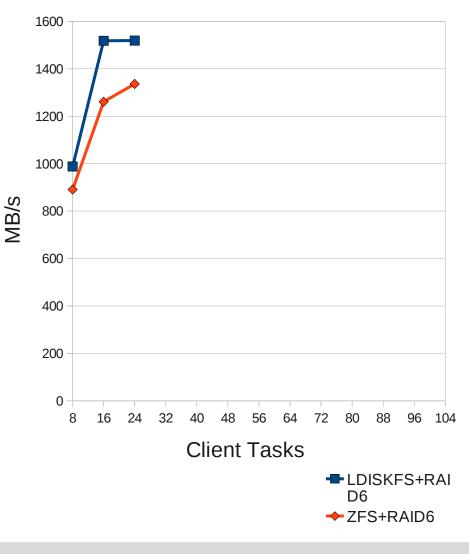


Meta Data Performance⁸⁰⁰⁰

LDISKFS

- Parallel directory
 improvements
- ptlrpc improvements
- ZFS
 - Lock contention on MDT limiting creates and unlinks
 - Higher level Lustre layers are clearly capable
 - Improvements targeted for the ZFS layers

National Laboratory


16 LLNL-PRES-551671

Write Performance

- IOR Test Case
 - Single Shared File
 - Single OSS
 - 30 Nearline SAS drives
- LDISKFS
 - Designed for this workload
 - Years of optimization
- ZFS
 - New Linux implementation
 - Unoptimized
 - Additional Overhead

Lawrence Livermore National Laboratory

Single shared file IOR (10G block, 1M transfers)

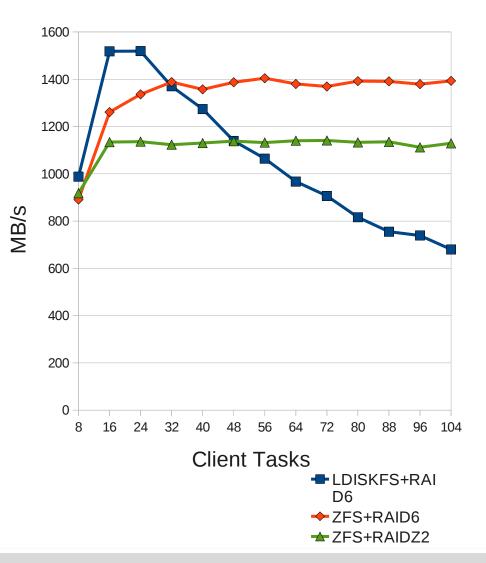

Write Performance

- Sequoia Workload
 - Defensive checkpoint I/O
 - 1,572,864 Compute Cores
 - 768 OSS Nodes
 - 2048 Tasks per OSS

LDISKFS

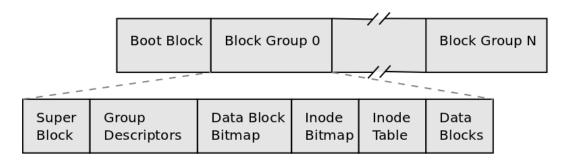
- Increasing tasks per OSS degrades performance
- ZFS
 - Constant performance

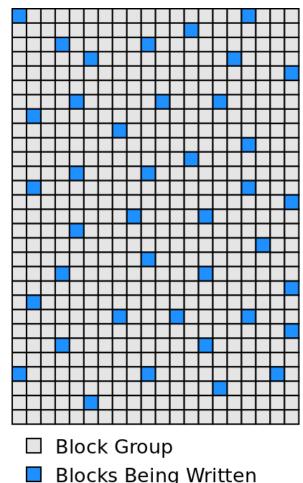
Single shared file IOR (10G block, 1M transfers)


Write Performance

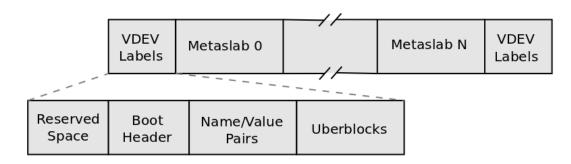
- Sequoia Workload
 - Defensive checkpoint I/O
 - 1,572,864 Compute Cores
 - 768 OSS Nodes
 - 2048 Tasks per OSS

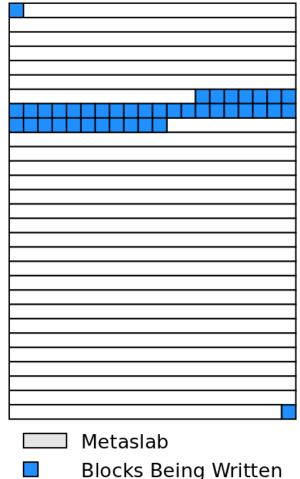
LDISKFS


- Increased tasks per OSS degrades performance
- ZFS
 - Constant performance
 - Increase I/O size for RAIDZ2


Single shared file IOR (10G block, 1M transfers)

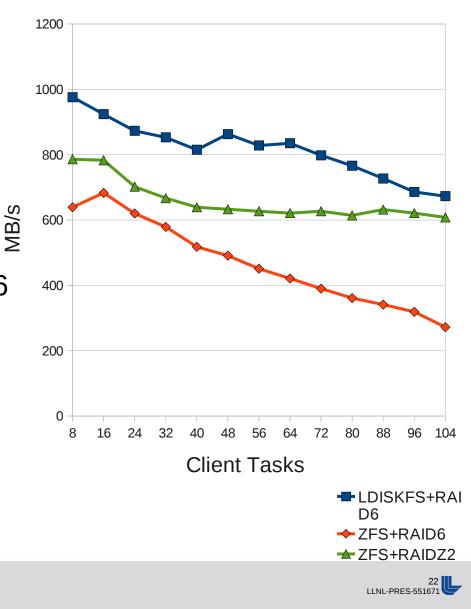
LDISKFS On Disk Format


- Device is divided in to N statically allocated block groups
- Allocator has less flexibility over which inodes and blocks must be updated.
- Desirable for small file workloads
- Concurrent I/O degrades to random I/O



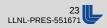
ZFS On Disk Format

- Only vdev labels are statically allocated at beginning/end
- Copy-on-Write
 - New dnodes and blocks are written
 - Allocation decisions done at txg sync
 - All writes can be done sequentially
- Concurrent I/O can be sequentialized
- Increase I/O size



Read Performance

- Random I/O
- LDISKFS
 - mballoc allows larger I/O
- ZFS
 - 128K maximum block size
 - IOPs limited for ZFS+RAID6
- Network Request Scheduler
- Lustre aware prefetching


Single shared file IOR (10G block, 1M transfers)

Open Questions


- Cache Devices
 - Only make sense for OSSs
 - ZFS Intent Log (ZIL)
 - For small synchronous I/O
 - Speed up lock cancels
 - L2ARC
 - Cache the object indexes
 - Generic read cache
- Compression
- Ditto blocks
- Snapshots

Summary

- Lustre+ZFS is usable
- But there are trade offs
 - ZFS data integrity, scalability, manageability, extra features
 - LDISKFS performance
- Expected in Lustre 2.4
- Website
 - http://zfsonlinux.org/lustre.html

ZFS on Linux

- Stable Release Candidate
 - ZFS 0.6.0-rc8
- Community
 - Maintained packages:
 - Ubuntu PPA
 - Gentoo ebuilds
 - Generic RPMs
 - Website
 - http://zfsonlinux.org
 - Mailing Lists
 - zfs-discuss@zfsonlinux.org
 - zfs-devel@zfsonlinux.org

ON LINUX

25