
Nathan Rutman

Improvements in Lustre Data Integrity

Friday, April 20, 12

mailto:Nathan_Rutman@xyratex.com
mailto:Nathan_Rutman@xyratex.com

Topics

•Lustre Wire Checksum Improvements
–Cleanup
–Portability
–Algorithms
–Performance

•End-to-End Data Integrity
–T10DIF/DIX
–Version Mirroring

2

Friday, April 20, 12

Goals

•End user assurance that their data was written to disk
accurately

•Protection against all RAID (single) failure modes
•Offload the heavy calculations from the servers
•Support a wider range of client/server hardware

3

Friday, April 20, 12

Over-the-Wire Bulk Checksums

4

Friday, April 20, 12

Bulk Checksum History

•Initially only software CRC-32 (IEEE, ANSI) 2007
•Adler-32 added in 1.6.5

–easy to calculate
–weak for small message sizes

•Shuichi Ihara added initial support for hardware CRC-32C
(Castagnoli)

–Intel Nehalem
–bz 23549, landed in Lustre 2.2

•WC added multi-threaded ptlrpcd, and bulk RPC checksums
moved into ptlrpcd context: parallelized checksums

–LU-884, LU-1019, in Lustre 2.2
•sptlrpc implementation used a different set of functions

–CRC-32, Adler, MD5, SHA1-512

5

Friday, April 20, 12

Bulk Checksum Changes

•Cleanup of sptlrpc and bulk checksum algorithms to use the
kernel crypto hash library

–simplifies future additions
–LU-1201

•Addition of Software CRC-32C support
–eg. if server has HW support and clients don’t
–LU-1201

•Implementation of Hardware CRC-32 using PCLMULQDQ
–Intel Westmere
–MRP-314, still testing

6

Friday, April 20, 12

Bulk Checksum Speeds, MB/s

7

0

750

1500

2250

3000

Adler CRC-32 CRC-32C

SW HW

IEEE 802.3
ANSI X3.66
gzip bzip2
mpeg2 png

iSCSI
Btrfs

Zlib
rsync

Friday, April 20, 12

End-to-End Data Integrity with T10 and Version
Mirroring

8

Friday, April 20, 12

T10 DIF

9

2

The guard tag protects the data portion of the sector. The application tag is simply opaque
storage. And finally, the reference tag is being used to protect against out-of-order and
misdirected write scenarios.

512 bytes of data APP REFGRD

16-bit guard tag (CRC of 512-byte data portion)

16-bit application tag

32-bit reference tag

5120 514 516 519

Figure 1 DIF tuple contents

Standardizing the contents of the protection information enables all nodes in the I/O path,
including the disk itself, to verify the integrity of the data block.

Comparison of I/O Paths

A typical I/O submission scenario in an enterprise configuration is illustrated in figure 2.
The only entity capable of using the 8 bytes of protection information is the array firmware.

Figure 2 Normal I/O write: Application writes byte stream to OS. Filesystem writes in logical

blocks that are multiples of 512-byte sectors. Depending on physical transport a CRC may be

applied on the wire. Array firmware generates 8 bytes of proprietary protection information.

Disk stores 520-byte sectors and generates its own CRC.

A similar DIF-enabled configuration will look like figure 3. The I/O controller generates and
appends the protection information and every subsequent node in the I/O path can verify
the data integrity.
Combining T10 DIF with the Data Integrity Extensions allows the protection information to
be attached even higher up in the stack–either in the application or in the operating system.
The entire I/O path is protected and true end-to-end data integrity protection is achieved.

•8 bytes of PI appended to 512 byte sectors
•HBA and disk drives must support T10-DIF in hardware

Friday, April 20, 12

3

Figure 3 DIF I/O write: Application writes byte stream to OS. Filesystem writes in logical blocks

that are multiples of 512-byte sectors. HBA generates protection information and sends out

520-byte sectors. SAN switch can optionally check protection information. Array firmware

verifies protection information, optionally remaps reference tags and writes to disk. Disk verifies

protection information before storing request.

OS

Disk Drive

I/O Controller

SAN

Disk Array

Application

Byte stream

512 byte sector

520 byte sector

Xport CRC

8 byte PI

520 byte sector

520 byte sector

520 byte sector

8 byte PI

Sector CRC

8 byte PI

8 byte PI

8 byte PI

8 byte PI

Figure 4 DIX I/O write: Application writes byte stream to OS, optionally including protection

information. Filesystem writes in logical blocks that are multiples of 512-byte sectors. If no pro-

tection information has been generated, OS automatically does so and attaches it to the I/O. HBA

verifies data integrity, merges data and protection scatterlists and sends out 520-byte sectors.

SAN switch can optionally check protection information. Array firmware verifies protection infor-

mation, optionally remaps reference tags and writes to disk. Disk verifies protection information

before storing request.

Figure 5 illustrates the protection envelopes of the protection schemes mentioned above.
The Normal I/O line illustrates the disjoint integrity coverage offered using a current oper-
ating system and standard hardware. The HARD line shows the protection envelope offered
by the Oracle Database accessing a disk array with HARD capability. DIF shows coverage

T10 DIF

10

HBA
calculates all PI

GRD APP REF

Application

OS

HBA

Disk drive GRD APP REF

Byte stream

512 byte sector

512 byte sector

512 byte sector ✔ ✔

T10-D
IF

Friday, April 20, 12

3

Figure 3 DIF I/O write: Application writes byte stream to OS. Filesystem writes in logical blocks

that are multiples of 512-byte sectors. HBA generates protection information and sends out

520-byte sectors. SAN switch can optionally check protection information. Array firmware

verifies protection information, optionally remaps reference tags and writes to disk. Disk verifies

protection information before storing request.

OS

Disk Drive

I/O Controller

SAN

Disk Array

Application

Byte stream

512 byte sector

520 byte sector

Xport CRC

8 byte PI

520 byte sector

520 byte sector

520 byte sector

8 byte PI

Sector CRC

8 byte PI

8 byte PI

8 byte PI

8 byte PI

Figure 4 DIX I/O write: Application writes byte stream to OS, optionally including protection

information. Filesystem writes in logical blocks that are multiples of 512-byte sectors. If no pro-

tection information has been generated, OS automatically does so and attaches it to the I/O. HBA

verifies data integrity, merges data and protection scatterlists and sends out 520-byte sectors.

SAN switch can optionally check protection information. Array firmware verifies protection infor-

mation, optionally remaps reference tags and writes to disk. Disk verifies protection information

before storing request.

Figure 5 illustrates the protection envelopes of the protection schemes mentioned above.
The Normal I/O line illustrates the disjoint integrity coverage offered using a current oper-
ating system and standard hardware. The HARD line shows the protection envelope offered
by the Oracle Database accessing a disk array with HARD capability. DIF shows coverage

T10 DIX

11

GRD APP REF

Application

OS

HBA

Disk drive GRD APP REF

Byte stream

512 byte sector

512 byte sector

512 byte sector ✔ ✔

HBA merges data
and PI scatterlists

GRD

GRD APP REF

✔

User app or OS
generates GRD

✔

T10-D
IF + T10-D

IX

Friday, April 20, 12

3

Figure 3 DIF I/O write: Application writes byte stream to OS. Filesystem writes in logical blocks

that are multiples of 512-byte sectors. HBA generates protection information and sends out

520-byte sectors. SAN switch can optionally check protection information. Array firmware

verifies protection information, optionally remaps reference tags and writes to disk. Disk verifies

protection information before storing request.

OS

Disk Drive

I/O Controller

SAN

Disk Array

Application

Byte stream

512 byte sector

520 byte sector

Xport CRC

8 byte PI

520 byte sector

520 byte sector

520 byte sector

8 byte PI

Sector CRC

8 byte PI

8 byte PI

8 byte PI

8 byte PI

Figure 4 DIX I/O write: Application writes byte stream to OS, optionally including protection

information. Filesystem writes in logical blocks that are multiples of 512-byte sectors. If no pro-

tection information has been generated, OS automatically does so and attaches it to the I/O. HBA

verifies data integrity, merges data and protection scatterlists and sends out 520-byte sectors.

SAN switch can optionally check protection information. Array firmware verifies protection infor-

mation, optionally remaps reference tags and writes to disk. Disk verifies protection information

before storing request.

Figure 5 illustrates the protection envelopes of the protection schemes mentioned above.
The Normal I/O line illustrates the disjoint integrity coverage offered using a current oper-
ating system and standard hardware. The HARD line shows the protection envelope offered
by the Oracle Database accessing a disk array with HARD capability. DIF shows coverage

T10 DIX with Lustre

12

GRD

Application

OSC

OSS

MDRAID GRD APP REF

Byte stream

512 byte sector

512 byte sector

512 byte sector

GRD

GRD

GRD APP REFHBA

Disk drive GRD APP REF

512 byte sector

512 byte sector ✔ ✔

✔

✔

GRDOST 512 byte sector REF

✔B
ulkC

hecksum

Lustre End-to-End w
ith T10

Friday, April 20, 12

Changes to Lustre

•Additional checksum data described or carried in brw
RPC

•Add PI and checking to data path
•For mmap’ed pages, early GRD failure implies data has
changed, recompute from OSC

•Disable bulk checksums
•Optional GRD checking on OSS can push all checksum
load to HBA/disk hardware

13

Friday, April 20, 12

RAID failure modes

๏Parity Lost and Parity Regained - Andrew Krioukov

•Latent Sector (reliable read) errors
•Data Corruption
•Misdirected Writes
•Lost Writes
•Torn Writes
•Parity Pollution

•Outcomes
–Data recovery
–Data loss (detected)
–Data corruption (silent)

14

Friday, April 20, 12

RAID with Version Mirroring

•RAID stripe across disks
•Block (chunk) on one disk
•Multiple sectors per block
•Store block version in T10 APP field

–sectors within a chunk store the same version
–parity block contains version vector

15

B
cksum(B)

A
cksum(A)

C
cksum(C)

P(ABC)
cksum(P)

Ver0 Ver0 Ver0 0,0,0

GRD

APP

Friday, April 20, 12

Rebuild with Version Mirroring

16

B
cksum(B)

A
cksum(A)

C
cksum(C)

P(ABC’)

Lost	 Write

Ver0 Ver0 Ver0 0,0,1Ver0

C

Update C to C’, write C’ and P(ABC’)

Later, attempt to update A to A’
First, read B & C to prepare for constructing new P
But first read P to verify versions before writing P(A’BC’)
Version mismatch, latest is in P, so reconstruct C’ from P

C’ BAP(ABC’)
Write C’
Calculate P(A’BC’)
Write A’ and P(A’BC’)

Friday, April 20, 12

RAID failure modes

•Latent Sector (reliable read) errors - drive detects
•Data Corruption - GRD, lightweight, partial reads
•Misdirected Writes - REF
•Lost Writes - parity block version vector
•Torn Writes - sector versions
•Parity Pollution - GRD + versions allow safe
reconstruction

17

Friday, April 20, 12

Fin

18

Friday, April 20, 12

