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Computing at ORNL: 
   Driven by Open Science  

Innovative and Novel 
Computational Impact on 
Theory and Experiment 
• Seeks computationally 

intensive, large-scale 
projects to significantly 
advance science and 
engineering 

• Encourages proposals from 
universities, other research 
institutions and industry 

Awards made annually 

Peer-review of proposals for impact, 
computational readiness  

Allocations are from 1 to 3 years 

Average 10+ million compute hours per 
year 
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2012 2011 2010 2009 2008 2007 

But… INCITE is 2.5 to 3.5 Times 
Oversubscribed 

Meeting this demand for computational 
resources requires continued investment in 
leadership computing  
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The OLCF-3 Project Will Help Meet The 
Shortfall in Computational Resources for 
INCITE 

•  The next phase of the 
Leadership Computing Facility 
program at ORNL 

•  An upgrade of Jaguar from 2.3 
Petaflops today to between 10 
and 20 PF by the end of 2012 
with operations in 2013 

•  Built with Cray’s newest XK6 
compute blades 

•  When completed, the new 
system will be called Titan 
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• Upgrade of existing Jaguar Cray XT5 
• Cray Linux Environment  

operating system 
• Gemini interconnect 

• 3-D Torus  
• Globally addressable memory 
• Advanced synchronization features 

• AMD Opteron 6200 processor (Interlagos) 
• New accelerated node design using NVIDIA 

multi-core accelerators 
•  2011: 960 NVIDIA M2090 “Fermi” GPUs 
•  2012: 10-20 PF NVIDIA “Kepler” GPUs 

• 10-20 PFlops peak performance  
• Performance based on available funds 

• 600 TB DDR3 memory (2x that of Jaguar) 

ORNL’s “Titan” System 

Titan	  Specs	  

Compute	  Nodes	   18,688	  

Login	  &	  I/O	  Nodes	   512	  

Memory	  per	  node	   32	  GB	  +	  6	  GB	  

NVIDIA	  “Fermi”	  	  (2011)	   665	  GFlops	  

#	  of	  Fermi	  chips	   960	  

NVIDIA	  “Kepler”	  (2012)	   >1	  TFlops	  

Opteron	  	   2.2	  GHz	  

Opteron	  performance	   141	  GFlops	  

Total	  Opteron	  Flops	   2.6	  PFlops	  

Disk	  Bandwidth	   ~	  1	  TB/s	  
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Jaguar’s Cray XT5 Compute Node 

XT5	  Compute	  Node	  
Characteris6cs	  

Two	  AMD	  Opteron	  Istanbul	  
6	  core	  processors	  @	  2.6	  GHz	  

Host	  Memory	  
16GB	  

800	  MHz	  DDR2	  

SeaStar2+	  High	  Speed	  
Interconnect	  

Four	  compute	  nodes	  per	  XT5	  
blade.	  	  24	  blades	  per	  rack	  
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Titan’s Cray XK6 Compute Node 

HT3 
HT3 

PCIe Gen2 

XK6	  Compute	  Node	  
Characteris6cs	  

AMD	  Opteron	  6200	  Interlagos	  	  
16	  core	  processor	  @	  2.2GHz	  

Tesla	  M2090	  @	  665	  GF	  with	  6GB	  
GDDR5	  memory	  

Host	  Memory	  
32GB	  

1600	  MHz	  DDR3	  

Gemini	  High	  Speed	  Interconnect	  

Upgradeable	  to	  NVIDIA’s	  
next	  generadon	  Kepler	  processor	  

in	  2012	  

Four	  compute	  nodes	  per	  XK6	  
blade.	  	  24	  blades	  per	  rack	  



8 

Titan XK6 Builds Upon The Proven 
Cray XT Series of Systems 

Liquid-cooled design exhausts heat to 
R134a before it leaves the cabinet. 
Replaces 100 CRAC units! 
Saves about 900 KW  
of power in air movement alone 

ECOphlex liquid cooling  

1,600 CFM  
@ 75o 

3,200 CFM @ 75o 

Exit evaporators 

R134a piping 

Inlet evaporator 

1,600 CFM  
@ 75o 

480 V power 
More efficient than converting 
from 480 V to 208 V to 48 V 

Highly Integrated Packaging 

Provides more compute per rack 
while maximizing reliability through 
custom engineered airflow 
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What About the File System? 

• We will continue to use Lustre™ as our file system 
• Expand our Spider file system infrastructure  

–  We expect to increase capacity by 10 – 30 Petabytes  
•  (depending on storage technology) 

–  We expect to increase bandwidth by up to 1 TB/sec 
•  Targeting Lustre 2.x 

–  Enhanced metadata performance and resiliency under 
development with Whamcloud (NRE contract) 

–  Leveraging OpenSFS activities  
•  Community engagement 
•  Next-generation feature development  
•  Support of the canonical Lustre source tree  

•  The only file system that meets our requirements today 
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Lustre Improvements for Titan 

• ORNL funded work  
–  Improved resiliency through Imperative Recovery  
–  Improved metadata performance for large-scale file creation 

workloads – critical to many of our leadership-class applications 

• OpenSFS funded work  
–  Single-server metadata performance 
–  Distributing metadata among multiple servers 
–  Online consistency checking 

•  Targeting Lustre 2.2 and 2.3 for initial phase of most work 
–  Depends on completion before feature-freeze  
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Spider Phase 2  

Enterprise Storage

controllers and large
racks of disks are connected

via SAS

Storage Nodes

run parallel file system 
software and manage 
incoming FS traffic.

InfiniBand 

switch complex 
1200+ port 32 or 54 Gbit/sec

3000+ port 20 Gbit/sec

InfiniBand switch

complex

Lustre Router Nodes

Forward I/O operations 
from Compute Clients

to Storage Nodes
384 "XIO nodes"

Titan

Gemini 3D Torus
InfiniBand

DDR/QDR/FDR14

1.2 TB/sec > 1.5 TB/sec 

SAS-1 &

SAS-2

Other Systems 
(Viz, Clusters)

InfiniBand

DDR/QDR/FDR14
SAS-2

SAS-2 or

InfiniBand

QDR/FDR14

> 1.5 TB/sec 

InfiniBand

DDR

SAS-2

(6 Gbit)

SAS-1

(3 Gbit)

> 1.5 TB/sec 

2.5" 10K SAS

or 3.5" 7.2K SAS

13,344 

7.2K SATA Disks
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Quantifying Total System Performance 

•  Drive bandwidth in isolation is a very 
poor metric and may not translate to 
accelerated application performance  

•  Our workloads are are extremely 
varied from large block sequential I/O 
to small randomized read/write 
workloads 

•  To better understand our workloads 
we have developed a number of tools 
for monitoring and analyzing our 
system  

•  Based on these results we have 
developed a fairly extensive 
benchmarking suite to assess storage 
system performance 

•  We expect “system analytics” to play a 
large role in future system planning, 
optimization, and a feedback loop for 
dynamic systems  

Figure 2: Plot of file system usage observed on a given
day.
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Figure 3: CDF of write bandwidth usage derived from
multiple runs of the application (App-1).

from every RAID controller using the manufacturer
provided API, and the aggregate value across all
controllers gives the total file system usage. From
the scheduler’s log, our application (App-1) of inter-
est was running during the following time periods:
0:25 to 2:42 hrs, 9:30 to 9:56 hrs, 14:53 to 17:31
hrs, and 19:45 to 23:18 hrs. Observing the write
bandwidth usage during the above mentioned time
periods we see a clear pattern of high write band-
width by App-1. Though there might be other ap-
plications running concurrently and taxing the file

system resources, it is possible to get an estimate of
the I/O usage of the application of interest by ob-
serving multiple runs of the same application. The
bandwidth metrics captured at the controllers are
not per application, as that would require extensive
application trace information, adding considerable
overhead. It is worth mentioning that, we observed
an ongoing constant 5 GB/s write activity on back-
end disks at all times, which is taken into consider-
ation into our framework as background noise.

Using the time series data, we plot the Cumula-
tive Distribution Function (CDF) of the write band-
width usage by the application (App-1), as shown in
Figure 3. From the plot we can infer that for more
than 20% of total application runtime the user is
writing at a rate greater than 32 GB/s with peaks
around 42 GB/s. The CDF plot provides us with
an estimate of the user application’s I/O needs. In
our study of a few other applications, a similar pat-
tern was observable with two other applications, as
shown in Table 4. This table summarizes the I/O
usage for three applications, with the peak write
bandwidth observed for each application and what
percentage of the total runtime does the application
operate at more than 80% and 50% of the peak write
bandwidth. The application (App-1) is a short du-
ration routine that generally runs for a few tens of
minutes. However, for a longer running jobs, say
3 hours or more, it is difficult to capture such I/O
behavior by directly observing the file system us-
age. In general for long running applications, users
do frequent checkpointing, which is one of the most
I/O consuming task. An auto correlation over the
runtime stats of the application will give us the peri-
odic I/O usage pattern or the checkpointing pattern
of the application. This is evident in the Figure 2,
for the time period of 10:00 to 14:30 hrs, as two sep-
arate activities with two distinct frequencies with
two different amplitudes can be observed.

Table 4: Applications I/O Usage

Applications App-1 App-2 App-3

Observed Peak(GB/s) 38 -42 12-15 22-35

Runtime >80% of peak 18-20% 6-5% 4-5%

Runtime >50% of peak 38-42% 12-16% 20-25%

7

Observed file system write bandwidth utilization in a day 
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Observation From Spider Phase 1 
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Reads are 
about 2 
times more 
than writes. 

25-30% 
Reads / 
writes 

•  Many requests are small (< 16K) 
• Workload is approximately 40/60 Read/Write 
•  Most I/O is random once it hits the storage   
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Spider Phase 2 – Disk Architecture  

• Expect marginal improvements in disk drive performance 
–  Latency has flat-lined  
–  Bandwidth improvements are modest  
–  Considering high-performance SAS rather than SATA to meet our 

performance targets 
•  Dramatically higher IOPs and substantial bandwidth improvements 
•  May map better to our expected workloads, providing better realized application 

performance 
•  Capacity requirements are not substantially higher than those of our current 

system (10PB) and may allow high-performance SAS  

• What about flash based storage? 
–  Unlikely to deploy a pure flash based storage for Spider Phase 2 
–  Integration of flash as an element in the caching hierarchy may 

provide benefits  
•  Provide a burst buffer and may allow further sequentialization prior to destaging   
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Longer Term Challenges in Big Data  

•  Tens of thousands of disk drives  
•  Tens of thousands of tapes 
•  Over 25 Petabytes of data 
•  Managing ¼ - ½ billion files is difficult  

–  At 200K threads we can generate millions of  
     persistent objects in a single application invocation  
–  One user has over 400 TB of data in 8M files 
–  One project has over 700 TB of data in 19M files 

•  Managed with very little information 
–  User ID of owner  
–  Group ID of owner  
–  Total size in bytes 
–  Time of last accessß current figure of merit! 
–  Time of last modification  
–  Time of last status change 

Over 20 Petabyes of data in archival storage alone 

Visual Analytics of large-scale ensemble workloads 
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Exascale Will Exacerbate This 

•  Managing trillions of objects will be 
daunting  
–  Exascale systems with O(10^9) threads could 

generate tens of billions of persistent objects 
in a single application invocation  

–  How will data be organized? 
•  Blocks of bytes, structured data models, self 

describing objects (reflection/introspection)   
•  Enable automated analysis and data aggregation 

at the storage level by imparting data structure to 
the storage system 

–  Does a file system namespace even make 
sense?  
•  Companies such as Google manage over 70 PB 

in a single BigTable instance (2010) 
•  Extended attributes may provide flexibility for 

alternative approaches (tagging, virtual 
directories) 
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The POSIX Interface and Metadata 

• A proven interface for human interaction  
–  Hierarchical directories provide organization 
–  Filenames provide a mechanism for identification 

•  Augmented with standard attributes  
–  But how often do you rely upon “spotlight” over “finder”? 

• Widely used to support non-interactive “batch” workloads 
–  We often see over 100 thousand files in a single directory  
–  Applications may use file naming strategies based on combinations 

of rank, timestep, variable identifier 
–  Often very little information is conveyed in this organization and 

naming to a human  
–  Understanding of this structure is often limited to a single researcher 

or a small cohesive team 
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Structured Data in an Unstructured 
Data Store 

•  The POSIX write/read/seek model is extremely  
   flexible, supporting any number of data models  
•  This extreme flexibility often comes at the cost of 

understandability and performance  
–  POSIX is a poor API for scientific data models 
–  Limits scalability  

•  Scientific simulations often rely upon well known data models  
–  But… this model is not imparted to the storage system 

•  Scientific datasets often have complex relationships that are not 
captured in scientific data models or storage systems  
–  Climate land model experiment – land cover forcing – multiple scenarios  
–  These datasets may comprise hundreds of thousands of files 

representing multiple model configurations with individual files spanning 
time and/or space 

Denovo  
Radiation Transport – used in a 
variety of nuclear energy 
and technology applications. 
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How Do We Impart Meaning Using File 
Systems Today? 

•  The climate community is an exemplar in data management 
for simulation data using existing (often antiquated) 
technologies 

• Data Reference Syntax (DRS) and Controlled Vocabularies 
–  “atomic datasets” – granules mapped to individual variables 

representing the entire spatial-temporal domain 
–  Variable names are defined by the Climate and Forecast Metadata 

convention 
–  File names encode additional metadata:  

•  filename = <variable name>_<MIP table>_<model>_<experiment>_<ensemble member>[_<temporal 
subset>].nc 

–  Atomic datasets are then organized using directory structure 
•  <activity>/<product>/<institute>/<model>/<experiment>/<frequency>/<modeling realm>/<variable name>/

<ensemble member>/ 



20 

How Is Data Shared? 

• Metadata from climate 
simulation datasets is then 
harvested into one or more 
THREDDS catalogs 

•   Search and discovery is 
enabled through Apache 
SOLR or Sesame RDF   

• Data delivery is enabled 
through GridFTP or Data 
Mover Light 
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Lots of Work to Impart Meaning in an 
Unstructured Data Store 

•  Can we impart structure and relations to 
better capture metadata directly within the 
data store? What is needed? 
–  Need the ability to model complex relationships 

between data elements  
–  Support for multi-dimensional data and metadata  
–  Sparse data support  
–  Flexible search capabilities  
–  Distributed and parallel  

•  Exemplars exist: BigTable and Cassandra 
–  How can we leverage these blank-sheet of paper 

approaches in designing a data management 
system for Science? 

Extreme-Scale AMR 
Scaling difficult Adaptive Mesh Refinement techniques 
to over 224,000 cores on Jaguar demonstrating 
excellent scaling. 
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How to Address These Challenges 

• Develop a generalized scalable object store as the foundation 
–  Leverage existing technologies where possible 

• Research in alternative persistent storage semantics and 
services 
–  Leverage the experience of other big-data communities  

•  Ideally we identify common needs and thereby share long-term costs  
–  Identify a base level of semantic and services required by simulation 

and analysis workloads and the scientific data models they use  

• Establish partnerships with the vendor community to productize 
technologies developed 
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Join Us At The Open 

Join Us for the Open Source File Systems BOF – Transitioning 
from Petascale to Exascale  
•  Tomorrow (11/15) From 12:15 – 1:15 
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Questions? 
Galen Shipman 
Email:  gshipman@ORNL.Gov 
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