
Lustre Network Request Scheduler (NRS)

21 July 2011, OpenSFS TWG call

2

 NRS allows the PTLRPC layer to reorder the servicing of incoming
RPCs.

 Predominantly server-based, although the clients could play a
part in certain scenarios.

 Why do this?
 Different reasons:

• Performance improvements:
– Increased throughput on disk drives by producing

disk-friendly RPC streams.
– Increased throughput by balancing network traffic

and exploiting aspects such as locality of
reference on client nodes.

• New functionality:
– Prioritization amongst cluster clients.
– Various forms of Quality of Service, at the

filesystem level.

Generic Idea

3

NRS Framework

 NRS core manages available policies.
 PTLRPC services denote what policies they support at service initialization

time.
 These are checked against the available policies from NRS core.
 Policy assignment for each service is done from NRS core.

 If present, first policy with Dominant flag set is chosen at
service initialization time, but this scheme can be more
elaborate if required.

 Each service has an Active and a Secondary policy.
 Active policy handles all incoming RPCs.
 Active policy can delegate unsupported RPC types to Secondary

policy.
 Default (FIFO) policy will be adequate to act as Secondary in most

cases.
 Active policy changeable at run-time via lprocfs on a per-service basis.
 Policies can be disabled via lprocfs on a per-service basis.

4

NRS policies

 NRS can implement different policies, in order to satisfy different end goals.
 FIFO, existing functionality wrapped in an NRS policy.
 OBRR (Object-Based Round Robin).

 RPCs are grouped per-object, and according to file offset.
 Aims to provide higher throughput by reducing disk seeks.

 CBRR (Client-Based Round Robin).
 RPCs are grouped per client (export).
 Aims to balance network traffic.

 PBRR (PID-Based Round Robin).
 RPCs are grouped according to NID::PID of the application that initiates I/O.
 Similar to CBRR; aims to also exploit locality of reference at clients.

 Client or User Prioritization policy.
 Aims to offer a form of QoS by giving higher priority to more important parts of

the workload.
 Importance can be determined by different means, to achieve different goals.

 Variable-Slice adaptations of the above algorithms can allow for further forms of
control, e.g. OBVS (Object-Based Variable Slice).

5

NRS policy “obj_extents”

 First policy we plan to implement.
 Is an implementation of OBRR.

 Operates on OSS nodes.
 Handles OST_READ and OST_WRITE RPCs.
 RPCs are grouped in number-limited or size-limited per-object

groupings; this circumvents problems related to request
starvation.

 Per-object groups are sorted in either linked lists or rbtrees,
tbd, depending on expected size.

 Could benefit from using a scalable data structure like the
binary heap WC are using.

 Concerns have been expressed about the effectiveness an elevator-like
policy like obj_extents may have; performance measurements would be
good to have in any case.

6

Considerations

 Scalable data structures and perhaps cache-friendly accesses are of
consideration.

 Large number of requests, many concurrent threads.
 May be beneficial to have more than one policy per-service operating

concurrently.
 WC effort is taking place in parallel; seems to have a good number of

things right: priority queue data structure for policies, and various other
ideas.

 Need to either merge with WC effort, or otherwise have only
one ongoing effort; there is no benefit to the codebase from
having two efforts in parallel.

 Need to obtain some performance measurements to ascertain the
extent of the validity of NRS as a concept, and of specific policies.

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

