
Lustre Network Request Scheduler (NRS)

21 July 2011, OpenSFS TWG call

2

 NRS allows the PTLRPC layer to reorder the servicing of incoming
RPCs.

 Predominantly server-based, although the clients could play a
part in certain scenarios.

 Why do this?
 Different reasons:

• Performance improvements:
– Increased throughput on disk drives by producing

disk-friendly RPC streams.
– Increased throughput by balancing network traffic

and exploiting aspects such as locality of
reference on client nodes.

• New functionality:
– Prioritization amongst cluster clients.
– Various forms of Quality of Service, at the

filesystem level.

Generic Idea

3

NRS Framework

 NRS core manages available policies.
 PTLRPC services denote what policies they support at service initialization

time.
 These are checked against the available policies from NRS core.
 Policy assignment for each service is done from NRS core.

 If present, first policy with Dominant flag set is chosen at
service initialization time, but this scheme can be more
elaborate if required.

 Each service has an Active and a Secondary policy.
 Active policy handles all incoming RPCs.
 Active policy can delegate unsupported RPC types to Secondary

policy.
 Default (FIFO) policy will be adequate to act as Secondary in most

cases.
 Active policy changeable at run-time via lprocfs on a per-service basis.
 Policies can be disabled via lprocfs on a per-service basis.

4

NRS policies

 NRS can implement different policies, in order to satisfy different end goals.
 FIFO, existing functionality wrapped in an NRS policy.
 OBRR (Object-Based Round Robin).

 RPCs are grouped per-object, and according to file offset.
 Aims to provide higher throughput by reducing disk seeks.

 CBRR (Client-Based Round Robin).
 RPCs are grouped per client (export).
 Aims to balance network traffic.

 PBRR (PID-Based Round Robin).
 RPCs are grouped according to NID::PID of the application that initiates I/O.
 Similar to CBRR; aims to also exploit locality of reference at clients.

 Client or User Prioritization policy.
 Aims to offer a form of QoS by giving higher priority to more important parts of

the workload.
 Importance can be determined by different means, to achieve different goals.

 Variable-Slice adaptations of the above algorithms can allow for further forms of
control, e.g. OBVS (Object-Based Variable Slice).

5

NRS policy “obj_extents”

  First policy we plan to implement.
 Is an implementation of OBRR.

 Operates on OSS nodes.
 Handles OST_READ and OST_WRITE RPCs.
 RPCs are grouped in number-limited or size-limited per-object

groupings; this circumvents problems related to request
starvation.

 Per-object groups are sorted in either linked lists or rbtrees,
tbd, depending on expected size.

 Could benefit from using a scalable data structure like the
binary heap WC are using.

 Concerns have been expressed about the effectiveness an elevator-like
policy like obj_extents may have; performance measurements would be
good to have in any case.

6

Considerations

 Scalable data structures and perhaps cache-friendly accesses are of
consideration.

 Large number of requests, many concurrent threads.
 May be beneficial to have more than one policy per-service operating

concurrently.
 WC effort is taking place in parallel; seems to have a good number of

things right: priority queue data structure for policies, and various other
ideas.

 Need to either merge with WC effort, or otherwise have only
one ongoing effort; there is no benefit to the codebase from
having two efforts in parallel.

 Need to obtain some performance measurements to ascertain the
extent of the validity of NRS as a concept, and of specific policies.

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

