Hadoop MapReduce over Lustre*
High Performance Data Division

Omkar Kulkarni
April 16, 2013

* Other names and brands may be claimed as the property of others.
Agenda

- Hadoop Intro
- Why run Hadoop on Lustre?
- Optimizing Hadoop for Lustre
- Performance
- What’s next?
A Little Intro of Hadoop

- Open source MapReduce framework for data-intensive computing
- Simple programming model – two functions: Map and Reduce
- Map: Transforms input into a list of key value pairs
 - Map(D) \rightarrow List[Ki, Vi]
- Reduce: Given a key and all associated values, produces result in the form of a list of values
 - Reduce(Ki, List[Vi]) \rightarrow List[Vo]
- Parallelism hidden by framework
 - Highly scalable: can be applied to large datasets (Big Data) and run on commodity clusters
- Comes with its own user-space distributed file system (HDFS) based on the local storage of cluster nodes
A Little Intro of Hadoop (cont.)

- Framework handles most of the execution
- Splits input logically and feeds mappers
- Partitions and sorts map outputs (Collect)
- Transports map outputs to reducers (Shuffle)
- Merges output obtained from each mapper (Merge)
Why Hadoop with Lustre?

- HPC moving towards Exascale. Simulations will only get bigger.
- Need tools to run analyses on resulting massive datasets.
- Natural allies:
 - Hadoop is the most popular software stack for big data analytics.
 - Lustre is the file system of choice for most HPC clusters.
- Easier to manage a single storage platform:
 - No data transfer overhead for staging inputs and extracting results.
 - No need to partition storage into HPC (Lustre) and Analytics (HDFS).
- Also, HDFS expects nodes with locally attached disks, while most HPC clusters have diskless compute nodes with a separate storage cluster.
How to make them cooperate?

- Hadoop uses pluggable extensions to work with different file system types
- Lustre is POSIX compliant:
 - Use Hadoop’s built-in LocalFileSystem class
 - Uses native file system support in Java
- Extend and override default behavior: LustreFileSystem
 - Defines new URL scheme for Lustre – lustre:///n
 - Controls Lustre striping info
 - Resolves absolute paths to user-defined directory
 - Leaves room for future enhancements
- Allow Hadoop to find it in config files
Sort, Shuffle & Merge

- M → Number of Maps, R → Number of Reduces
- Map output records (Key-Value pairs) organized into R partitions
- Partitions exist in memory. Records within a partition are sorted
- A background thread monitors the buffer, spills to disk if full
- Each spill generates a spill file and a corresponding index file
- Eventually, all spill files are merged (partition-wise) into a single file
- Final index is file created containing R index records
- Index Record = [Offset, Compressed Length, Original Length]
- A Servlet extracts partitions and streams to reducers over HTTP
- Reducer merges all M streams on disk or in memory before reducing
Sort, Shuffle & Merge (Cont.)
Optimized Shuffle for Lustre

- Why? Biggest (but inevitable) bottleneck – bad performance on Lustre!

- How? Shared File System → HTTP transport is redundant

- How would reducers access map outputs?
 - First Method: Let reducers read partitions from map outputs directly
 - But, index information still needed
 - Either, let reducers read index files, as well
 - Results in (M*R) small (24 bytes/record) IO operations
 - Or, let Servlet convey index information to reducer
 - Advantage: Read entire index file at once, and cache it
 - Disadvantage: Seeking partition offsets + HTTP latency
 - Second Method: Let mappers put each partition in a separate file
 - Three birds with one stone: No index files, no disk seeks, no HTTP
Optimized Shuffle for Lustre (Cont.)

Mapper X
 Map
 Sort

Reducer Y
 Reduce
 Merge
 Merged Streams
 Output Part Y

Input Split X
 Map
 Map 1:Partition Y
 Map 2:Partition Y
 Merged Streams
 Output Part Y
 Map M:Partition Y

Map X:Partition 1
Map X:Partition Y
Map X:Partition R

Lustre
Performance Tests

- Standard Hadoop benchmarks were run on the Rosso cluster
- Configuration – Hadoop (Intel Distro v1.0.3):
 - 8 nodes, 2 SATA disks per node (used only for HDFS)
 - One with dual configuration, i.e. master and slave
- Configuration – Lustre (v2.3.0):
 - 4 OSS nodes, 4 SATA disks per node (OSTs)
 - 1 MDS, 4GB SSD MDT
 - All storage handled by Lustre, local disks not used
TestDFSIO Benchmark

- Tests the raw performance of a file system
- Write and read very large files (35G each) in parallel
- One mapper per file. Single reducer to collect stats
- Embarrassingly parallel, does not test shuffle & sort

![Throughput Chart]

Throughput

\[
\left(\frac{\sum \text{filesize}}{\sum \text{time}} \right)
\]

MB/s

More is better!

Write
Read

HDFS
Lustre

More is better!
Terasort Benchmark

- Distributed sort: The primary Map-Reduce primitive
- Sort a 1 Billion records, i.e. approximately 100G
 - Record: Randomly generated 10 byte key + 90 bytes garbage data
- Terasort only supplies a custom partitioner for keys, the rest is just default map-reduce behavior.
- Block Size: 128M, Maps: 752 @ 4/node, Reduces: 16 @ 2/node

![Runtime graph comparing Lustre and HDFS](graph.png)

Lustre 10-15% Faster
Work in progress

- Planned so far
 - More exhaustive testing needed
 - Test at scale: Verify that large scale jobs don’t throttle MDS
 - Port to IDH 3.x (Hadoop 2.x): New architecture, More decoupled
 - Scenarios with other tools in the Hadoop Stack: Hive, HBase, etc.

- Further Work
 - Experiment with caching
 - Scheduling Enhancements
 - Exploiting Locality