

● Outline
● NCI-NF site background
● Root on Lustre
● Speeding up Metadata

Dr Robin Humble

Dr David Singleton

NCI National Facility

● For many years have been Australia's premier open
supercomputing site (formerly “APAC-NF”)

● Current machine “vayu”
– ~1500 nodes, ~12k Nehalem cores
– 26 OSS's, 4 MDS's

● Wide job mix
– Single core for 600 hour, to 8k core for 30mins
– 128-512 core 2-3 hour jobs are “bread and butter”

● Suspend/Resume scheduling
– 95% machine utilisation is typical

● LD_RUN_PATH aggressively set
● Root on Lustre

NCI National Facility

● Only 3 OS images on the whole cluster
● Management

– OS on local disk, rsync'd from each other
– Holds master copy of OS images for compute & Lustre servers
– No Lustre

● Compute nodes, Data Movers, Login nodes
– oneSIS with root on Lustre
– Full OS image

● Lustre servers
– oneSIS ramdisk
– Cut down 1.1G OS image

Root on Lustre – Images Overview

● Simplicity
● Fewer things to fail

– No NFS or local disks involved

● Reliability and Scalability
● Use centralised scalable and reliable hardware

– If Lustre is down then jobs are hung anyway. May as well put
the OS there too

● Maintainability
● One rsync from the master OS image to the OS image

on Lustre updates every node immediately
● Unlimited space for OS packages, OS variations, ...

Root on Lustre – Why?

● oneSIS http://onesis.org/
– Read-only root on NFS
– PXE, root directory specified in dhcp, custom initramfs
– Easy to use and modify!

● Added “lustreroot” to oneSIS kernel boot arguments. eg.

lustreroot=mgs1@o2ib:mgs2@o2ib:/images/centos-5.5-compute-00

● http://nf.nci.org.au/wiki/OneSIS/Root-on-Lustre
– 64bit busybox initramfs, glibc, mount.lustre, rsync
– Patch oneSIS /init script
– IB and Lustre modules in initramfs

Root on Lustre – How?

http://onesis.org/
http://nf.nci.org.au/wiki/OneSIS/Root-on-Lustre

Root on Lustre – Works Fine

● timeshift=12
– Using time from BIOS can mean fs mount time is in the future
– MDS reboot within TZ hours of node boot leads to a dead node
– Solution is to timeshift back by >= TZ hours before mounting

Lustre in the initramfs

● “halfroot”, same as “lustreroot” except
– Have /, /lib64, /bin, /sbin in ~60MB ramfs
– Symlinks to read-only Lustre oneSIS OS image from top level

directories
– We've been running for years in this mode, recently moved to

the simpler full “lustreroot”, but might move back

Root on Lustre – Tweaks

Root on Lustre – Tweaks (ctd)

/images MDS

 IB packets/s

● Cons
● If ptlrpcd hangs, nodes die

– Rare deadlock in __wait_on_bit_lock due to local i/o VM
pressure on our small cluster (never on the big machine)

● Kernel bug? Lustre bug? Fundamental to network OS's?

● Resource Management system needs to behave
when the root fs (or any fs!) hangs
– Problem exists with Root on Anything, but exacerbated by

one big root fs
– Can setup eg. pbs_mom's to use local disk or ramdisk

● /images MDS loads up and takes a few seconds
when running all-node commands
– eg. “cexec -p uptime” takes ~12s on 1500 loaded nodes

Root on Lustre – Pros and Cons

● Pros
● Easy to use/maintain

– One copy of OS
– Clients sail through Lustre server updates

● As scalable and reliable as Lustre is
– Performance?

● Same as any other executable loading off Lustre

– Will improve with Lustre (has already?)
● Feasible to use hacks like “halfroot” or multiple /images fs's in the

short term

● Can be fully client/server cached
– With dedicated /images OSS(s) the whole OS is trivially

cacheable in OSS ram

Root on Lustre – Pros and Cons

● Problem
● Very slow “ls -l”

– Uncached “ls -altrR ~” runs at ~100 files/second
– Client-side caches help, but only when nodes aren't busy

● Daily rsync backups taking >24hrs

Metadata Speed – The Problem

● MDS? No
● Loads low
● All fs data fits entirely in ram

– MDT's are a 4k i/o write-only media after a while
● With quiet OSS's, dropping all MDS caches only

slows down fs sweeps by ~2x

Metadata Speed – Root Cause?

● OSS's? Yes
● Very busy OSS's
● Streams to read and write-through caches

aggressively pushing ldiskfs inodes/dentries out of
OSS ram

● “slabtop” can see inode/dentry caches go up and
down as large “ls -lR”'s try to complete. Many seeks
needed to achieve this

Metadata Speed – Root Cause?

● Possible Solution
● Could turn off read_cache and writethrough_cache

– However ~60% of i/o to our large fs gets a cache hit
– OSS caches are clearly a win for some workloads

Metadata Speed - Caching vs. Caching

● Better (but scarier) Solution
● Leave OSS caches on
● Kit Westneat suggested looking at vfs_cache_pressure

– Maybe set vfs_cache_pressure < 100 on OSS's?

● Size On Metadata feature may help too?

Metadata Speed - Caching vs. Caching

● What is vfs_cache_pressure?
● Balance between pages (data) cached and

inodes/dentries (ldiskfs metadata) cached
● =100 by default
● =0 means NEVER reclaim any inodes/dentries

– Dangerous! Scary! Can OOM!

● But...
● inodes are 912 bytes, dentries are 216 bytes - Tiny!
● 1G of slab ram on 1 OSS ~= 1M files

– Low mem OSS's shouldn't use read or write-through caches
● inode/dentry usage grows slowly with fs

Metadata - vfs_cache_pressure

● Tests show clearly that any value > 0 doesn't
really help, so it's all or nothing!

● Do sums, bite the bullet...
● Set vfs_cache_pressure=0 on OSS's

Metadata - vfs_cache_pressure=0

● Result
● 20 to 40x speedup of “ls -lR” and >10x speedup of

rsync backups
– Typical “ls -altrR ~” on an un-cached client is ~4k files/s

(when client cached is 32k files/s)
– Repeatable day to day. ie. Caches are being preserved

● Problem solved!

 ??

Metadata - vfs_cache_pressure=0

● Unexpected dentry problem
● inode count goes up and down, but dentries only grow
● dentries appear to never be deleted on OSS's, only

reclaimed by VM pressure
– Why?

● eg. At time of writing have total across OSS's of

 Count GByte

ldiskfs_inode_cache 27.5M 23

dentry_cache 191.7M 39

Total OSS ram 1248

Metadata – dentry problem

● When in doubt, hack the kernel...
● Try a simple OSS kernel patch – add

“vfs_dcache_pressure” knob that just affects the
dentry shrinker

vfs_cache_pressure=0

vfs_dcache_pressure=100

● But no good... makes metadata slow again

Metadata - vfs_dcache_pressure

● Only practical solution (also the simplest!)
● Run with vfs_cache_pressure=0
● Occasionally set vfs_cache_pressure > 0 to reclaim

dentries (and inodes)
– Live with slow metadata speeds for a day or so until they

repopulate

Metadata - vfs_cache_pressure=0

Summary

● Works well for us
● Easy to use/maintain
● As scalable and reliable as Lustre is
● Bit of work to setup
● See http://nf.nci.org.au/wiki/OneSIS/Root-on-Lustre

Root on Lustre – Summary

http://nf.nci.org.au/wiki/OneSIS/Root-on-Lustre

● The Problem
● Very slow “ls -l” and daily rsync backups taking >24hrs

● The Cause
● Very busy OSS read and write_through caches

pushing ldiskfs inodes/dentries out of ram

● A Solution
● (Carefully) set vfs_cache_pressure=0 on OSS's
● Occasionally set to >0 to cull dentries

● Result
● 20 to 40x speedup of “ls -lR” and >10x speedup of

rsync backups

Metadata Speed - Summary

nf.nci.org.au

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

