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● For many years have been Australia's premier open 
supercomputing site (formerly “APAC-NF”)

● Current machine “vayu”
– ~1500 nodes,  ~12k Nehalem cores
– 26 OSS's,  4 MDS's

● Wide job mix
– Single core for 600 hour, to 8k core for 30mins
– 128-512 core 2-3 hour jobs are “bread and butter”

● Suspend/Resume scheduling
– 95% machine utilisation is typical

● LD_RUN_PATH aggressively set
● Root on Lustre

NCI National Facility



  

● Only 3 OS images on the whole cluster
● Management

– OS on local disk, rsync'd from each other
– Holds master copy of OS images for compute & Lustre servers
– No Lustre

● Compute nodes, Data Movers, Login nodes
– oneSIS with root on Lustre
– Full OS image

● Lustre servers
– oneSIS ramdisk
– Cut down 1.1G OS image

Root on Lustre – Images Overview



  

● Simplicity
● Fewer things to fail

– No NFS or local disks involved

●  Reliability and Scalability
● Use centralised scalable and reliable hardware

– If Lustre is down then jobs are hung anyway. May as well put 
the OS there too

● Maintainability
● One rsync from the master OS image to the OS image 

on Lustre updates every node immediately
● Unlimited space for OS packages, OS variations, ...

Root on Lustre – Why?



  

● oneSIS   http://onesis.org/
– Read-only root on NFS
– PXE, root directory specified in dhcp, custom initramfs
– Easy to use and modify!

● Added “lustreroot” to oneSIS kernel boot arguments. eg.

lustreroot=mgs1@o2ib:mgs2@o2ib:/images/centos-5.5-compute-00

● http://nf.nci.org.au/wiki/OneSIS/Root-on-Lustre
– 64bit busybox initramfs, glibc, mount.lustre, rsync
– Patch oneSIS /init script
– IB and Lustre modules in initramfs

Root on Lustre – How?

http://onesis.org/
http://nf.nci.org.au/wiki/OneSIS/Root-on-Lustre


  

Root on Lustre – Works Fine



  

● timeshift=12
– Using time from BIOS can mean fs mount time is in the future
– MDS reboot within TZ hours of node boot leads to a dead node
– Solution is to timeshift back by >= TZ hours before mounting 

Lustre in the initramfs

● “halfroot”, same as “lustreroot” except
– Have /, /lib64, /bin, /sbin in ~60MB ramfs
– Symlinks to read-only Lustre oneSIS OS image from top level 

directories
– We've been running for years in this mode, recently moved to 

the simpler full “lustreroot”, but might move back

Root on Lustre – Tweaks



  

Root on Lustre – Tweaks (ctd)

/images MDS

 IB packets/s



  

● Cons
● If ptlrpcd hangs, nodes die

– Rare deadlock in __wait_on_bit_lock due to local i/o VM 
pressure on our small cluster (never on the big machine)

● Kernel bug? Lustre bug? Fundamental to network OS's?

● Resource Management system needs to behave 
when the root fs (or any fs!) hangs
– Problem exists with Root on Anything, but exacerbated by 

one big root fs
– Can setup eg. pbs_mom's to use local disk or ramdisk

● /images MDS loads up and takes a few seconds 
when running all-node commands
– eg. “cexec -p uptime” takes ~12s on 1500 loaded nodes

Root on Lustre – Pros and Cons



  

● Pros
● Easy to use/maintain

– One copy of OS
– Clients sail through Lustre server updates

● As scalable and reliable as Lustre is
– Performance?

● Same as any other executable loading off Lustre

– Will improve with Lustre (has already?)
● Feasible to use hacks like “halfroot” or multiple /images fs's in the 

short term

● Can be fully client/server cached
– With dedicated /images OSS(s) the whole OS is trivially 

cacheable in OSS ram

Root on Lustre – Pros and Cons



  

● Problem
● Very slow “ls -l”

– Uncached “ls -altrR ~” runs at ~100 files/second
– Client-side caches help, but only when nodes aren't busy

● Daily rsync backups taking >24hrs

Metadata Speed – The Problem



  

● MDS? No
● Loads low
● All fs data fits entirely in ram

– MDT's are a 4k i/o write-only media after a while
● With quiet OSS's, dropping all MDS caches only 

slows down fs sweeps by ~2x

Metadata Speed – Root Cause?



  

● OSS's? Yes
● Very busy OSS's
● Streams to read and write-through caches 

aggressively pushing ldiskfs inodes/dentries out of 
OSS ram

● “slabtop” can see inode/dentry caches go up and 
down as large “ls -lR”'s try to complete. Many seeks 
needed to achieve this

Metadata Speed – Root Cause?



  

● Possible Solution
● Could turn off read_cache and writethrough_cache

– However ~60% of i/o to our large fs gets a cache hit
– OSS caches are clearly a win for some workloads

Metadata Speed - Caching vs. Caching



  

● Better (but scarier) Solution
● Leave OSS caches on
● Kit Westneat suggested looking at  vfs_cache_pressure

– Maybe set  vfs_cache_pressure < 100  on OSS's?

● Size On Metadata feature may help too?

Metadata Speed - Caching vs. Caching



  

● What is vfs_cache_pressure?
● Balance between pages (data) cached and 

inodes/dentries (ldiskfs metadata) cached
● =100 by default
● =0 means NEVER reclaim any inodes/dentries

– Dangerous! Scary! Can OOM! 

● But...
● inodes are 912 bytes, dentries are 216 bytes -  Tiny!
● 1G of slab ram on 1 OSS ~= 1M files

– Low mem OSS's shouldn't use read or write-through caches
● inode/dentry usage grows slowly with fs

Metadata - vfs_cache_pressure



  

● Tests show clearly that any value > 0 doesn't 
really help, so it's all or nothing!

● Do sums, bite the bullet...
● Set   vfs_cache_pressure=0  on OSS's

Metadata - vfs_cache_pressure=0



  

● Result
● 20 to 40x speedup of “ls -lR” and >10x speedup of 

rsync backups
– Typical “ls -altrR ~” on an un-cached client is ~4k files/s 

(when client cached is 32k files/s)
– Repeatable day to day. ie. Caches are being preserved

● Problem solved!

                                                                 ....  ??

Metadata - vfs_cache_pressure=0



  

● Unexpected dentry problem
● inode count goes up and down, but dentries only grow
● dentries appear to never be deleted on OSS's, only 

reclaimed by VM pressure
– Why?

● eg. At time of writing have total across OSS's of

                                     Count    GByte

ldiskfs_inode_cache     27.5M      23 

dentry_cache              191.7M      39

Total OSS ram                            1248 

Metadata – dentry problem



  

● When in doubt, hack the kernel...
● Try a simple OSS kernel patch – add 

“vfs_dcache_pressure” knob that just affects the 
dentry shrinker

vfs_cache_pressure=0

vfs_dcache_pressure=100

● But no good... makes metadata slow again

Metadata - vfs_dcache_pressure



  

● Only practical solution (also the simplest!)
● Run with  vfs_cache_pressure=0
● Occasionally set   vfs_cache_pressure > 0  to reclaim 

dentries (and inodes)
– Live with slow metadata speeds for a day or so until they 

repopulate

Metadata - vfs_cache_pressure=0



  

Summary



  

● Works well for us
● Easy to use/maintain
● As scalable and reliable as Lustre is
● Bit of work to setup
● See  http://nf.nci.org.au/wiki/OneSIS/Root-on-Lustre

Root on Lustre – Summary

http://nf.nci.org.au/wiki/OneSIS/Root-on-Lustre


  

● The Problem
● Very slow “ls -l” and daily rsync backups taking >24hrs

● The Cause
● Very busy OSS read and write_through caches 

pushing ldiskfs inodes/dentries out of ram

● A Solution
● (Carefully) set   vfs_cache_pressure=0   on OSS's
● Occasionally set to  >0  to cull dentries

● Result
● 20 to 40x speedup of “ls -lR” and >10x speedup of 

rsync backups 

Metadata Speed - Summary
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